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Single charge transport in graphene

Running head: Single charge transport in graphene

5.1 Introduction

Generally, in electronic devices, the discreteness of electrons cannot be seen in a macroscopic transport measurement. 

In other words, the behaviors of individual electrons are hidden in an averaged view so that one can measure only 

statistical observables. Ways to disclose the behaviors of individual charges in transport are related to quantum states in 

which the wavefunctions of particles are bound, for example induced by (i) Coulomb repulsion in a metallic island, that 

is, single electron transistors (SETs); (ii) quantum confinement due to the size effect, that is, quantum dots (QDs); and 

(iii) occupation of charges in incompressible condensates at high magnetic fields, that is, the quantum Hall effect 

(QHE). The investigation of the former two requires small devices in nanometer scale, but the last quantum Hall effect 

[1] can be observed in macroscopic devices even over hundreds of micrometers. Interestingly, as recent studies 

demonstrated, the physics behind the quantum Hall localization is in the same principle as that of SETs or QDs [2]. The 

single charge behaviors have been explored mainly in systems with massive particles, conventional metals, and 

semiconductors. After graphene has been brought into practical realization by mechanical exfoliation form crystalline 

graphite, this two-dimensional system with massless particles has aroused the interest of the studies on single massless 

charge transport behaviors.

As an overview, in , an introduction about single charge tunneling behavior will be given. In , 

Electrical properties of graphene will be discussed. A review of studies on single charge transport behaviors of massless 

particles in graphene will be given in . Quantum Hall localization behaviors in graphene will be discussed, 

in particular, with respect to Coulomb blockade physics governing the charge tunneling into the compressible QDs, in 

.

5.2 Single charge tunneling

5.2.1 Single charge tunneling and Coulomb blockade

When electrons’ pathways in a conducting channel are blocked by an insulating gap with a capacitance of C , the 

conduction through the gap occurs by quantum tunneling if the tunneling resistance of the insulating barrier R
T

 is 

sufficiently larger than the resistance quantum of h/e
2 ≈ 25.813 kΩ, where h is the Planck’s constant and e is the 

electron’s charge. A charging energy scale (E
c
 ≡ e 2

/C) plays an important role in the conduction through the barrier in 

the regime where the thermal energy k
B

T is much smaller than E
c
. Here, k

B
 is the Boltzmann constant and T the 

temperature. Therefore, single charge tunneling occurs at low temperatures. A common device used to study such 

single charge tunneling behavior is a single electron transistor (SET), which is composed of a metallic “island” and 

three electrodes of source, drain, and gate. See Fig. 5.1A. These are the same components as those in conventional 

transistors. The island is completely isolated from the outer environment except for the weak couplings with the three 

electrodes.
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In order to inject one additional electron into the island; for example, from N
e
 to (N

e
 + 1), where N

e
 is the number of 

electrons occupied the states in the island; an additional energy is required due to the Coulomb repulsion, which 

amounts the difference of electrochemical potentials for (N
e
 + 1) and for N

e
 electrons, ΔE

add
 = μ

N  + 1 − μ N
. Here, 

the electrochemical potential reads as [3, 4]

The gate influence factor is defined as α
g
 ≡ C

g
/C Σ, where the total capacitance C Σ = C s

 + C
d
 + C

g
 and C

s
, C

d
, 

and C
g

 are the capacitances of source, drain, and gate, respectively. When the size of the island is small enough, the 

discrete energy states emerge as the level spacing exceeds the thermal broadening. The island is then considered as an 

artificial atom or a quantum dot (QD), and the single-particle energy of the N  electrons in the QD, E
N

, cannot be 

ignored according to Pauli’s exclusion principle. The energy required for charge injection into the QD equals the sum 

of interaction-induced energy (charging energy) and the single-particle energy spacing (frequently termed as quantum 

confinement); Δ
N
 = ε

N  + 1 −  ε N
, where ε

N
 is the single-particle energy, ΔE

add
 = E

c
 + Δ

N
. As the electrochemical 

potential of the island is tuned by modulation of the gate voltage V
g

 with a small source-drain bias V
ds

, the discrete 

energy levels in the island gradually shift up or down. When the chemical potentials of the source and drain electrodes 

(μ
s
 ≈ μ

d
) are placed in the region of the gap between the discrete levels of the island, electrons cannot tunnel from the 

drain to the island due to the strong Coulomb repulsion. This case is as illustrated in Fig. 5.2A. Only when a level of 

the island lies near μ
s
 and μ

d
, current can flow as shown in Fig. 5.2B. The behavior is called a Coulomb blockade, 

and it leads to an oscillation in the conductance as a function of gate voltage. See Fig. 5.2C. The tunneling of electrons 

occurs one at a time because the (N
e
 + 1) state can be occupied by one electron due to the Pauli’s exclusion principle. 

This is why Coulomb blockade behavior is considered as a manifestation of the single charge tunneling. The 

conduction occurs via the single charge tunneling. The Coulomb peaks are broadened by thermal energy k
B

T. The 

relation between the oscillation period ΔV
g

 and the required energy for the single charge tunneling ΔE
add

 is 

eα
g
ΔV

g
 = ΔE

add
 − Δ

N
. If the island size is large enough and the quantum confinement is negligible, the equation 

can be simplified as eα
g
ΔV

g
 = ΔE

add
. It now shows the definition of the gate influence factor, ratio of total energy of 

the system to the single electron charging energy of the gate eΔV
g

.

Fig. 5.1

A schematic drawing of a single electron transistor (A) and its equivalent circuit (B).
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5.2.2 Coulomb diamonds

The Coulomb oscillation is also affected by changing the source-drain bias voltage (Fig. 5.3). The energy change after 

one electron tunnels from the source electrode to the island (ΔE
s
) and from the island to the drain electrodes (ΔE

d
) 

with a finite V
ds

 is

Details of the calculation can be found in references [3, 4]. Electrons can tunnel from source to drain when both the 

energies are negative assuming zero temperature, ΔE
s
 < 0 and ΔE

d
 < 0, and otherwise the conductance is zero. This 

leads to a condition in which the conductance is blocked regime, which is

(A, B) A schematic diagram of a single charge tunneling behavior in an SET. When the chemical potentials of the source and drain 

electrodes lie in the gap between the levels of N e  electrons and (N e  + 1) electrons, conduction is blocked (A). When the level aligns 

with the Fermi energies of source and drain, electrons can tunnel one at a time (B). (C) Coulomb oscillation of G as a function of V g .
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Fig. 5.3

Coulomb diamond structures. Gray diamonds are the regions where the conductance is suppressed.
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When projected in a V
g
 − V

ds
 plane this condition defines a regime where the conduction is prohibited and regime 

shows diamond like structures, so-called Coulomb diamonds[Instruction: (Fig. 5.3)]. Conductance of a SET measured 

as a function of V
g

 and V
ds

 is zero in this regime and shows Coulomb peaks at the diamond edges. From the positive 

and negative slopes of the edges, C
d

 and C
s
 values can be estimated according to Eq. (5.3).

5.3 Electrical properties of graphene

5.3.1 Electronic structure of graphene

Graphene is the basic building block of graphite and carbon-based nanomaterials such as carbon nanotubes. It is a 

purely two-dimensional system because it is composed of a single layer of carbon atoms, which make the honeycomb 

lattice. It shows unconventional properties such as high thermal conductivity [5], high and nearly equal mobilities at 

room temperature for both electron and hole conduction up to 200,000 cm
2 V− 1 s− 1

 [6–8], and ballistic transport in 

micrometer length scale [6–8]. These properties stem from the massless nature of the charge carriers due to the linear 

energy dispersion relation [9–12] and make graphene a promising candidate for nanoelectronic devices.

The lattice structure of graphene as well as its band structure is shown in Fig. 5.4a. The lattice possesses two sublattices 

denoted by A and B, and they give a rise to the valley degeneracy (or often termed as pseudospin) in addition to the 

trivial spin degeneracy. Near the Dirac point chirality is defined in regard to this pseudospin associated with the two 

components of the wave function [9]. Ignoring the second order hopping, the energy dispersion relation is calculated as

where k
x
, k

y
 are the components of two-dimensional momentum, γ

1
 is the nearest-neighbor hopping energy and a is 

the lattice constant, , where a
0
 is the C C distance of the graphene honeycomb lattice [9, 11]. The band 

structure is shown in Fig. 5.4b and c. A simplified form of the dispersion relation near zero energy is, E(q) ≈ ± v
F

q, 

where v
F

 is the Fermi velocity (~ 1 × 10
8 cm/s) and q is the relative moment to Dirac points (K  or K′). This linear 

dispersion is depicted in Fig. 5.4c. Due to this linear dispersion relation near zero energy the charge carriers follow the 

Dirac equation rather than Schrödinger equation. The Dirac equation is given by , where  is the 

Pauli matrix and  is the particle’s wavefunction.

(5.4)
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5.3.2 Transport properties of graphene

Transport measurement usually deals with low energies. In transport measurements, graphene linear dispersion relation 

therefore holds. In conventional semiconductors, particles follow a parabolic band, and the density of states (DOS) 

stays constant regardless of energy. However, in graphene with linear band, the DOS increases linearly with increasing 

the absolute value of energy (Fig. 5.5). The conduction and valence bands touch each other only at the Dirac points 

and thus Fermi surface vanishes at zero energy. Despite the zero DOS, there is no band gap at zero energy.

The behavior of DOS can be observed via transport measurement on graphene transistors. The upper inset of Fig. 5.6 

shows a scanning tunneling microscope image of the suspended graphene device. The lower two insets of Fig. 5.6 

show optical images of the device exfoliated from highly oriented pyrolytic graphite (HOPG) that is transferred onto an 

Si substrate (left-hand side) and the device is grown on a metal substrate and transferred onto Si (right-hand side). The 

Si chips are covered by a thermally grown oxide layer with a thickness of around 300 nm. The oxide layer makes 

monolayer graphene visible [13] as well as acting as a gate dielectric. The highly doped Si is used as a backgate to 

modulate the charge carrier density (n) in graphene. For the 300 nm thick SiO
2
, the carrier density can be estimated by 

the relation n = αV
bg

, where the gate efficiency factor α ≈ 7.2 × 10
10 cm

− 2 V− 1
 [14]. Fig. 5.6 shows the resistance 

(R) as a function of the backgate voltage (V
bg

), which is often referred to as transfer characteristics. Due to the 

vanishing DOS near the “charge neutral point,” a resistance peak appears. The roughly symmetric transfer curves 

demonstrate the electron-hole symmetry.

(a) Atomic structure of graphene. Gray diamond  shows the unit cell of the lattice. A and B denote sublattices. (b, c) Band structure of 

graphene. White hexagon  denotes the first Brillouin zone in (b). The three-dimensional image  shows both the conduction and 

valence bands, which touch at K  and K ′ points.
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Fig. 5.5

Density of states as a function of energy D(E) for particles with linear and quadratic dispersion.
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Here one should note that the charge neutrality point does not necessarily correspond to the Dirac point of the band. 

The explanation is as follows. One cannot expect a system without disorder in nature. The origin of disorder in 

graphene can be structural defects [15–18], charged impurities [19–21], corrugation [22, 23], ripples [24], substrate 

roughness [25], and so forth, or it can be a combination of these. Regardless of their origin, disorders induce a potential 

variation along the sample as seen in Fig. 5.7. Following the disordered potential landscape, the local band structure 

varies. As a consequence of the disordered potential and the gapless nature of the graphene band, when the Fermi 

energy (E
F

) is near the charge neutral point, both regions where the charge carriers are dominated by electrons and 

holes appear. This is a unique phenomenon of graphene, the so-called electron-hole puddles formation [26], whereas 

density puddles with either positive or negative charges are only observed in conventional semiconductor 2DESs. Due 

to the electron-hole puddles one may expect a very high resistance near the charge neutral point. However, the puddle 

edges do not produce a clear boundary condition because the charges are not totally bound in a single puddle due to 

Klein tunneling [27, 28]. As a result, a finite resistance peak appears. The full-width-at-half maximum (FWHM) of the 

peak in an R-n curve is a rough estimation of the density inhomogeneity (Δn
d

). In Fig. 5.6, graphene grown by 

chemical vapor deposition (CVD) shows a much larger disordered density (Δn
d
 ≅ 1.8 × 10

12 cm
− 2

) than exfoliated 

graphene from highly oriented pyrolytic graphite (HOPG) (Δn
d
 ≅ 5 × 10

11 cm
− 2

). Because the substrate roughness 

or embedded charges inside the SiO
2
 substrate are the main source of the disorder in graphene transistors [26], when 

the substrate is removed and graphene device is suspended [29, 30], the resistance peak becomes very narrow showing 

low Δn
d
 ≅ 6 × 10

10 cm
− 2

. Also, the resistance at the peak becomes higher as seen in Fig. 5.6.

alt-text: Fig. 5.6

Fig. 5.6

Transfer characteristics measured on a patterned CVD graphene, a graphene flake exfoliated from HOPG, and a suspended graphene 

device before and after current annealing. Insets show the representative images of the devices (an SEM image on the top and optical 

microscopy images). The density inhomogeneity obtained from the full width of half maximum of each peak is 1.8 × 10
12

, 5 × 10
11

, 

1.7 × 10
11

, and 6 × 10
10  cm

− 2
, for the patterned CVD graphene, the exfoliated HOPG graphene, the suspended graphene and the 

suspended graphene after annealing, respectively.

alt-text: Fig. 5.7
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When a magnetic field is applied, the quantum Hall effect (QHE) is observed in graphene as in conventional 2DESs. 

However, the behavior is distinct from that of 2DESs. Conventional 2DESs have massive carriers following a parabolic 

band structure and as a result exhibit quantum Hall plateaus at integer filling factors (integer QHE). Graphene having 

the linear dispersion relation and the zero band gap, however, shows quantum Hall plateaus at Hall conductivities 

σ
xy
 = νe

2
/h for the filling factor sequence ν  = ± 2, ± 6, ± 10, …, ignoring interactions, which is the so-called “half-

integer QHE” [10, 12]. Here, h is the Planck’s constant. Note that the fourfold degeneracy with spin and valley 

symmetries is taken into account. The QHE in graphene is shown in Fig. 5.8. The unique half-integer QHE is due to 

the zero energy Landau level (LL) degeneracy. The LL energy in graphene is given by E
N
 = ± ħω

c
(N  + 1/2), where 

ħ  is the Planck’s constant over 2π, ω
c
 = eB/m

∗
 is the cyclotron frequency, and N  is the quantum number. Here, B  is 

the magnetic field and m
∗
 is the effective mass. The DOS at zero magnetic field collapse into LLs at a finite magnetic 

field. The LL degeneracy is 4eB/h. The factor 4 arises from the fourfold degeneracy. However, in the lowest LL 

pinned at zero energy, which is by itself unusual, electrons and holes share the state and both are half degenerate. When 

disorder becomes weaker, other more fragile QH states induced by interactions emerge. For instance, spontaneous 

symmetry breaking gives rise to the states with twofold symmetry (spin or pseudospin) at ν  = 0, ± 4, ± 8, …, as well as 

the fully broken symmetry states at ν  = ± 1, ± 3, … [31–36]. Also fractional quantum Hall states appear as a result of 

the formation of composite quasiparticles [29, 30, 37–39].

5.4 Single charge tunneling in graphene

When electrons in graphene are confined in one-dimension (graphene nanoribbons) or in two-dimension (graphene 

quantum dots), single charge tunneling behavior occurs within the massless Dirac nature of particles. This will promise 

rich physics behind the confined Dirac particles. For the study, the advantages of graphene over other nanomaterials 

such as carbon nanotubes (CNTs) or semiconductor nanowires are its two-dimensionality and the fact that it can be 

patterned by a lithographic process followed by etching. Such a process is easily accessible because it is based on the 

conventional top-down approach. The quantum confinement effect in graphene nanoribbons and in graphene single 

electron transistors has been investigated in experiments as well as in theoretical studies. They will be reviewed in this 

section.

5.4.1 Band gap opening in graphene

One of the most attractive electronic applications of graphene is field-effect transistors because it exhibits excellent 

electrical properties such as very high carrier mobility with an electron-hole symmetry [10, 14, 40, 41] and ballistic 

Schematic drawing of a disordered potential landscape. Light  (dark) gray  indicates the regions with excess holes (electrons).

alt-text: Fig. 5.8

Fig. 5.8

Typical quantum Hall behavior of graphene. Longitudinal resistance (R xx ) and Hall resistance (R xy ) traces measured at 12 T are 

plotted as a function of V g  − V N , where V N  is the voltage of charge neutrality.



transport in a large length scale of microns [42]. Moreover, it shows a high thermal conductivity that exceeds those of 

diamond and graphite [43] so it may be used for integrated devices with a much lower heat dissipation compared to the 

conventional silicon-based devices. However, we have a serious problem that graphene has only a zero-band gap. The 

off-state current is not totally suppressed near the charge neutral point. This is because there are always charge carriers 

near the charge neutral point, electron-hole puddles, due to the presence of disorders. Martin et al. have well 

demonstrated this localized phenomena of the electron-hole puddles in graphene [26].

Opening a band gap in graphene is, therefore, one of the key issues in the quest to achieve a high performance of 

graphene electronic devices. Several ways to open a band gap in graphene have been proposed: graphene superlattices, 

graphene nanomeshes, biased bilayer graphene, and graphene nanoribbons. The approach of graphene superlattices is 

to break the valley symmetry by introducing another periodicity in addition to the honeycomb lattice. There have been 

suggestions to produce these graphene superlattices, for example, the periodic ripples often found in graphene grown 

on metal substrates [44], antidot lattices [45–47], a periodic potential [48], patterned hydrogen adsorption [49], 

substrate-induced superlattice on BN [50], lithographic patterning [51, 52], and so forth. Graphene nanomesh, an array 

of graphene nanoribbons, exhibits an effective band gap in transport. The mesh structure is obtained via a plasma 

etching process on patterned masking layers such as membranes, block copolymer layers and nanoimprinted layers 

[53–56]. Such a band gap opening was also observed in amorphous carbon nanomesh synthesized directly from phase-

separated polymer blends [57]. Graphene nanomesh has been also studied as a promising material for the thermoelectric 

devices because it significantly reduces the thermal conductivity when the porosity is controlled [58, 59]. An energy 

gap feasible for the field-effect devices, say, more than 0.1 eV, has been achieved in biased bilayer graphene. In order 

to induce an asymmetry of the on-site energies in the top and bottom layers [60–62], researchers have used molecular 

doping on graphene grown by thermal decomposition of SiC [63], a dual-gate structure fabricated on an exfoliated 

bilayer graphene flake [64–67], or dual molecular doping on both the top and the bottom of a bilayer graphene flake 

[68].

5.4.2 Graphene nanoribbons

Another approach for the band gap opening is to spatially confine the electron wave functions in graphene. For 

instance, one can shrink the width of a graphene field-effect device in the nanometer scale, which results in graphene 

nanoribbons. They show metallic or semiconducting behaviors depending on their width and atomic structure at the 

edge. This is analogous to carbon nanotubes, where the boundary condition is determined by the rolling direction 

(chiral vector) of a graphene sheet, while in graphene nanoribbons two edges determine the boundary condition. 

Graphene nanoribbons have been intensively studied as another route toward the field-effect transistor application [69–

78] because they exhibit a tunable band gap. Graphene nanoribbons serve not only as the high performance field-effect 

transistors but also, in the respect of quantum mechanics, as a system for a fundamental study on single charge 

tunneling behavior, in particular that of massless Dirac particles. When a nanoribbon or a nanoconstriction 

interconnects two metallic systems (either metal electrodes or bulk graphene flakes), the energy gap (or the different 

energy gaps distributed along the translational direction) of the constriction acts as a tunnel barrier, which is essential for 

the single charge tunneling.

The electronic structure of the graphene nanoribbons [79–82] was theoretically studied much earlier (in 1996) than the 

exfoliation of the one-atom-thick sheet, “graphene” (in 2004) [14]. The basic electronic properties of graphene 

nanoribbons were even then discovered by calculations using a tight binding model. Fujita et al. [80] showed the band 

structures of graphene nanoribbons with zigzag edges and armchair edges. Here, they found that for graphene with 

zigzag edges, a peculiar edge ferromagnetism is present with an antiparallel spin orientation between the two opposite 

edges and for graphene with armchair edges, a band gap appears. Nakada et al. [81] and Ezawa [79] revealed that 

graphene nanoribbon with armchair edges has an energy gap Δ that is tunable by changing the width w . Here, w  

usually scales in the units of the number of dimer lines perpendicular to the translational direction of the ribbon, N
a

 and 

N
z
 for the graphene nanoribbons with armchair edges and with zigzag edges, respectively (see Fig. 5.9). Depending 

on the boundary conditions, if some of the one-dimensional modes cross the Dirac point, and then the ribbon shows 

metallic behavior, but it is otherwise semiconducting with a finite energy gap. When N
a
 = 3p or 3p + 1, graphene with 

armchair edges shows a band gap while it is metallic when N
a
 = 3p + 2, where p is an positive integer. Nanoribbons 

with the zigzag edge on the other hand always exhibit a flat band at zero energy regardless of the ribbon width as 

shown in Fig. 5.10. However, according to a recent ab initio calculation [83], even for graphene nanoribbons with 
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zigzag edges, gaps appear because of a staggered sublattice potential on the hexagonal lattice due to edge 

magnetization (see Fig. 5.11).

alt-text: Fig. 5.9

Fig. 5.9

The atomic structures of an armchair nanoribbon (N a  = 11) (A) and a zigzag ribbon (N z  = 7) (B). Dark gray  and light gray dots 

indicate the sublattices. The edge sites are indicated by the thick lines.

alt-text: Fig. 5.10

Fig. 5.10

Band structures of armchair (A) and zigzag ribbons (B) of various widths calculated by a tight binding model.

Modified from K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: nanometer size effect and 

edge shape dependence, Phys. Rev. B 54 (1996) 17954–17961.
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It is not yet possible to experimentally fabricate a graphene nanoribbons with clear edges either of armchair or of zigzag 

orientation only (Fig. 5.12). The edges are usually rough, containing both the armchair and zigzag orientations not only 

in patterned nanoribbons but also in exfoliated flakes. See, for instance [84]. There are several ways to fabricate 

graphene nanoribbons. A common approach is to reduce the size of graphene by e-beam lithography and a plasma 

etching technique [85–87]. For this approach, graphene is often obtained by mechanical exfoliation from crystals of 

natural graphite or HOPG using a sticky tape [14] and deposited on a silicon substrate with an about 300 nm-thick 

thermally grown oxide, which make monolayer graphene visible in an optical microscope due to an increased optical 

path and the notable opacity of graphene [13]. The transferred flakes are identified by an optical microscope. An e-

beam resist is spin-coated on the SiO
2
 substrate with the transferred graphene flakes. An appropriate etching pattern is 

drawn on the resist on top of graphene flakes by e-beam lithography, and the exposed resist pattern is developed by a 

chemical solvent. Now, a part of the graphene flake is exposed and the chip is subjected to a reactive ion etching (RIE) 

chamber for the O
2
 or Ar plasma etching of the part. After removal of the resist, the patterned graphene nanoribbons or 

nanoconstrictions are prepared and the electrical contacts to the devices are made by further processes of e-beam 

lithography and metalization. The energy gap in graphene nanoribbons shows an inversely proportional behavior to the 

width of the ribbons as reported in  [86], who found that Δ [eV] ≈ 0.2/(w[nm] − 16[nm]) (Fig. 5.12). The energy gap, 

for instance, 0.1 eV, can be obtained in graphene nanoribbon with w  ~ 18 nm, say, less than 20 nm. Though the 

procedure is quite common and reliable, it is not suitable for definition of atomically clear edge structures due to the 

anisotropic nature of plasma etching process and a bad etch selectivity of graphene to the resist mask under the plasma.

Although coherent transport is expected through a graphene nanoribbon [88, 89], it is not yet possible to fabricate clear 

edges on graphene nanoribbons (Fig. 5.13). Instead, at low temperatures, the gate-dependent behavior conductance (G) 

is often cluttered by oscillations or fluctuations [90–92]. They may be due to the network of graphene quantum dots 

(QDs) and/or the rough edge structures. Even Coulomb diamond-like structures are quite commonly observed in 

graphene nanoribbons [90, 91, 93]. However, nanoribbons with the disordered edge (mixture of zigzag and armchair 

Band structure of a N a  = 12 zigzag graphene nanoribbon. Δ z
0

 and Δ z
1

 are the direct band gap and the energy splitting at kd z  = π , 

respectively.

Data from Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97 (2006) 216803.
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Fig. 5.12

Atomic force microscope (A) and scanning electron microscope images (B, C) of graphene nanoribbon devices. (D–F) Temperature 

dependent conductance of the ribbons with various widths. (G) The energy gap as a function of the width of devices.

Modified from M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98 

(2007) 206805.
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edges) have shown the conductance quantization sequence of the integer multiples of 2e
2
/h due to the ballistic charges 

of graphene and the valley degeneracy lifting [92, 94].

A more promising way to control the edge is based on the carbo-thermal reduction of SiO
2
 to SiO in argon 

environment at around 700°C [95]. The carbon atoms at the edge of graphene are used for the process and the flake 

edges aligned in the crystallographic direction (Fig. 5.14). A Raman spectroscopy study confirmed the graphene edge 

orientations [84]. A similar result was obtained by a hydrogen plasma etching [96], a gas-phase chemistry etching 

process [97] or by plasma etching using nanospheres as a mask [98]. With these methods, long graphene nanoribbon 

transistors with controlled edges were fabricated [96–100]. However, single charge tunneling behavior using the edge-

controlled nanoribbons or constrictions has not yet been reported.

alt-text: Fig. 5.13

Fig. 5.13

(A) Conductance as a function of V g . (B) A smoothed trace of the curve in (A). (C) Stability diagram of a graphene nanoribbon 

device. (D) Zoom of the plot in (C).

Modified from F. Molitor, A. Jacobsen, C. Stampfer, J. Güttinger, T. Ihn, K. Ensslin, Transport gap in side-gated graphene 

constrictions, Phys. Rev. B 79 (2009) 075426.
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5.4.3 Graphene single electron transistors

Graphene SETs can be defined by isolating a part of a graphene flake and connecting it with two constrictions (or 

nanoribbons) on the opposite sides, which serve as the source and drain capacitors. A side gate structure can be 

patterned on graphene, or Si backgate can also be used to modulate the electrostatic energy of the island. So far, in 

order to pattern the SET structure on graphene, researchers often used the plasma etching technique. The basic structure 

of graphene SETs is the same as conventional SETs based on metals or semiconductors. However, there is a clear 

distinction. Due to the massless nature of the charges in the system, the quantum confinement is different from that for 

conventional SETs, where the charges obey the massive parabolic dispersion relation.

Here we consider the quantum confinement energy, which becomes important when the size of the island is small 

enough, that is, it is considered as a QD. For massive carriers for instance in 2DES, the quantum confinement energy of 

an island is given from the two-dimensional box problem by Δ
N
 ≈ h 2

/(8m
e

d
2
), where m

e
 is the effective mass and d 

is the diameter of the island. It shows Δ
N

 is proportional to 1/d
2
. However, a different spectrum is applied for graphene 

SETs with massless charge carriers as, Δ
N
 ≈ v

F
h/(2d). Here Δ

N
 is inversely proportional to d. The 1/d dependence 

of the quantum confinement energy for a graphene SET has been demonstrated by [101]. They have also found that the 

oscillation period ΔV
g

 varies randomly (not showing the even-odd sequence due to the spin degeneracy of the massive 

carriers), and the variation of the chaotic δ(ΔV
g

) is larger than typical variations observed in nongraphene QDs by 

orders of magnitude (see Fig. 5.15). Furthermore, δ(ΔV
g

) becomes notably broader with decreasing d approximately 

following δ(ΔV
g

) ∝ 1/d
2
. Such a “Dirac billiard” behavior raises the importance of the shape of the graphene QD for 

the behavior of the single charge tunneling in the system (Fig. 5.16). According to a theoretical calculation [102], 

regular-shaped (disk) graphene QDs show sharp resonances, which reduces the effective gated region, but the 

irregular-shaped (stadium) QDs cannot support bound states due to chaotic dynamics. Irregular Coulomb oscillation has 

been observed by others in a normal SET structure with patterned island [103], and Coulomb oscillation behaviors in 

nanoconstrictions [91, 104]. More studies are needed because a regular ΔV
g

 has also been observed in a normal SETs 

Graphene nanoribbons fabricated by anisotropic etching.

Modified from R. Yang, L.C. Zhang, Y. Wang, Z.W. Shi, D.X. Shi, H.J. Gao, E.G. Wang, G.Y. Zhang, An anisotropic etching effect in the 

graphene basal plane, Adv. Mater. 22 (2010) 4014–4019.
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[105, 106] (Fig. 5.16) or in a direct measurement on compressible QDs in quantum Hall regime using scanning 

tunneling microscopy (STM), where they observed the fourfold periodicity due to the spin and valley degeneracies 

[107]. In addition to the ground state Coulomb diamonds, the excited states and phenomena in a double QD system 

have also been revealed in experiments [103, 108, 109]. The coupling of the mechanical modes and single electron 

tunneling were observed in graphene mechanical resonators, which causes a shift of a resonance frequency larger than 

100 kHz [110]. In bilayer graphene, a nanoscale circular p-n junction generated by the bias voltages of an STM tip and 

the backgate, where the confined states (of massive Dirac Femions) were visualized via STM technique [111]. Despite 

the intensive studies, the interesting physics behind the confined massless particles are largely unexplored. For instance, 

it would be an intriguing experiment if one fabricates the SET with the edge-controlled constrictions using 

crystallographic etching or even with a hexagonal-shaped graphene island as described in . Also, 

controlled spin states using specific edges will provide an insight for a spin qubits where a long-distance coupling is 

possible [112].
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Fig. 5.15

Separation of nearest-neighbor peaks at zero bias voltage (ΔV g ) measured in a graphene quantum dot. The peak spacing shows a 

large variation (a factor of 5 or more).

From L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Chaotic Dirac billiard in 

graphene quantum dots, Science 320 (2008) 356–358.

alt-text: Fig. 5.16

Fig. 5.16

Source-drain current as a function of the gate voltage and Coulomb diamond structures.

From C. Stampfer, E. Schurtenberger, F. Molitor, J. Guettinger, T. Ihn, K. Ensslin, Tunable graphene single electron transistor, Nano 

Lett. 8 (2008) 2378–2383.



5.5 Charge localization in graphene

5.5.1 Localization in the quantum Hall regime

Localization of charges in the quantum Hall regime, which gives rise to the quantum Hall plateaus, has been found to 

occur within the boundaries of Coulomb blockade physics [2, 113]. For the charge confinement, the insulating barriers 

of incompressible strips play an important role. As shown in , a disordered potential landscape in graphene 

induces a density profile along the sample. The carriers are redistributed to flatten the disordered potential as shown in 

Fig. 5.17. This linear screening is not valid when a perpendicular magnetic field is applied though. In some regions, the 

level degeneracy is completely filled as n increases, and the carriers cannot screen out the disordered potential in these 

regions. Due to the gap between the LLs, carriers can no longer be injected, that is, the regions become totally 

incompressible. The incompressible regions serve as insulating barriers to enclose the compressible dots. The charges 

coming into the compressible QDs are governed by Coulomb blockade physics. Every charging event occurs by one 

electron (or hole) at a time into the discrete levels of the QDs. This leads to a sudden jump in the local compressibility 

(dn/dμ), where μ is the chemical potential. At higher B  field, the same density profile appears at accordingly higher n 

because the LL degeneracy is proportional to B  (eB/h). The compressibility spikes produce lines parallel to specific 

filling factors as shown in Fig. 5.17. The presence of the compressible QDs in the QH regime has been demonstrated 

by a direct transport measurement on the dots using an STM tip [107].

5.5.2 Compressible quantum dots in the quantum Hall regime

The influence of the compressible QDs on macroscopic conductance of graphene device has recently been investigated 

by magnetotransport measurements of conductance fluctuations [114]. Conductance curves as a function of V
bg

 at high 

magnetic fields often possess fluctuations, which clutter the main conductance quantization behavior. However, these 

fluctuations are found to be a manifestation of charge localization. Although the local process is not shown in 

mesoscopic transport due to the averaging, the fluctuations can reflect the single charge tunneling that occurs locally 

into the compressible QDs. Conductance as a function of n at 15 T is shown in Fig. 5.18A. In addition to the quantized 

steps and the signatures of quantization, there are fluctuations, which are reproducible for repeated measurements. 

These fluctuations are more pronounced if one measures transconductance g
m

. Here, an ac modulation δV
bg

 is 

applied to the backgate, only the ac component of the source-drain current δI
ds

 is measured, and g
m
 =  δI

ds
/δV

bg
. 

Both measurements were done with a dc-voltage bias of V
ds
 = 500 μV. The frequency of δV

bg
 was 433 Hz, and its 

root-meansquare amplitude was 10 mV. Insets show the schematics of the measurements.
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Fig. 5.17

Schematics of the compressible QD formation at high magnetic field.
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Fig. 5.18



The same backgate sweep was repeated for different magnetic fields. The result is plotted in a [Instruction: 1. intead of 

"color rendition" should be "grayscale rendition"]color rendition in a (n, B)-plane. See Fig. 5.19A. There are many 

line features and they are classified into groups in which lines are parallel to each other. The lines in a group run parallel 

to a certain filling factor line. The lines parallel to ν  = ± 2 are the most strong and sharp as the filling factor 2 is most 

profound because of the largest gap between N  = 0 and N  = 1 LLs. Also, ν  = 6-line can be discerned, which is another 

half-integer filling factor. Surprisingly, more fragile broken symmetry states and fractional quantum Hall states can be 

clearly seen in the fluctuation map, whilewhereas, in a similar map of conductance, such states are invisible or only 

seen only as faint signatures if visible. Details can be found in Ref. [114].

Conductance (A) and transconductance (B) curves measured at B  = 15 T. Diagrams show the measurement schematics.

From [114] D.S. Lee, V. Skakalova, R.T. Weitz, J.H. Smet, K. von Klitzing, Transconductance fluctuations as a probe for interaction-

induced quantum Hall states in graphene, Phys. Rev. Lett. 109 (2012) 056602.
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The [Instruction: ...color... -> ...grayscale...]color rendition with the line features resembles the local compressibility 

map measured on graphene [113] as well as earlier on GaAs 2DESs [2] using a scanning SET. Thus, it is natural to 

associate the conductance fluctuations with the compressible spike lines. Far from the complete filling of the level 

degeneracy, the linear screening holds. As one increases n by modulation of the backgate, compressible quantum dots 

emerge as described in . Incompressible strips play a role to isolate the dots. As illustrated in Fig. 5.20, 

conducting channels are always present near the sample edge due to the edge potential. Current can flow through these 

edge states. During modulation of n, the compressible spikes may emerge for some dots due to the Coulomb blockade 

allowing charging of the dots. Accordingly, additional transport channels through the network of the dots may be 

turned on, off, or their path is altered. At every compressible spike the charging give rises to a fluctuation of the source-

drain current. The same fluctuation behavior would occur at the same deviation of n from complete filling even at a 

different magnetic field. As a consequence, the conductance fluctuation peaks or valleys run parallel to the filling factor 

lines in the (n, B)-plane. It should be noted that the line features of the conductance fluctuations have already been 

discovered in GaAs 2DESs [115] and recently in graphene [116, 117]. They just measured the resistance and the results 

showed only the lines parallel to the single particle states, half-integer QH states in graphene, and integer QH states in 

GaAs, respectively. In the transconductance measurement, using the lock-in technique reveals the presence of more 

fragile interaction induced states of broken symmetry states and fractional quantum Hall states [114]. For instance, 

ν  = 0 and ν  = 1 lines for broken symmetry states and a fractional filling factor (ν  = 1/3) lines are also found in the color 

rendition of Fig. 5.19A.

In order to visualize the strength of the fluctuations lines as well as to determine the filling factor of the lines we 

transform the data set in a window into a correlation spectrum as a function of filling factor, C(ν), which shows how 

much the data along a certain slope in the (n, B)-plane are correlated and thus how distinctively they make the line with 

the slope. A schematic illustration of the calculation is shown in Fig. 5.21. Here, the data set of g
m

 as a function of n 

and B  can be regarded as a matrix, D(n, B). A data window is chosen in n
min

 ≤ n ≤ n
max

 and B
min

 ≤ B  ≤ B
max

. The 

matrix element is then, D
ij
 ≡  D(n

j
, B

i
). Here, n

j
 (B

i
) is the jth (ith) element of n (B) from n

min
 (B

min
). The 

correlation function as a function of filling factor is then defined as

(A) Greyscale rendition  of g m  in the (n , B)-plane. (B), (C) Correlation function C (ν) for the data in the windows, which is marked in 

the rendition.

From D.S. Lee, V. Skakalova, R.T. Weitz, J.H. Smet, K. von Klitzing, Transconductance fluctuations as a probe for interaction-induced 

quantum Hall states in graphene, Phys. Rev. Lett. 109 (2012) 056602.

Q3

Section 5.5.1

alt-text: Fig. 5.20

Fig. 5.20

Schematic illustration of compressible quantum dots and edge channels in a graphene device.



where δ ν  is an allowance function defined as, δ ν  = 1 if r(θ
m

) < r
a

 and δ ν  = 0, otherwise. Here r(θ
m

) is the distance 

in the unit of data pixels (Δ
n

 and Δ
B

) between the point of D
pq

 and the line crossing the point of D
kl

 with a slope, 

s = tan(π/2 − θ
m

), that is, the line for the filling factor, ν(θ
m

) = (Φ
0
/s) · (Δ

n
/Δ

B
). Here, the denominator in Eq. (5.6) 

is a normalization factor. The allowance factor is chosen as r
a
 = 1. For the value of ν(θ

m
) parallel to the line features 

of the g
m

 peaks or deeps the summation of D
kl

 D
pq

 will be larger, whereas it will be canceled out when ν(θ
m

) line is 

not parallel to the line features in the map. The analysis is shown in Fig. 5.22.

In the spectrum of C(ν) obtained from the data in the lower left rectangle in the color rendition of Fig. 5.19, filling 

factors of ν  = − 2, − 4, − 6, and − 10. Here, ν  = − 4 state is particularly interesting because it is attributed to a 

symmetry breaking either of spin or valley. Also, it did not appear in the conductance data [114]. Fractional quantum 

Hall states appear as well. C(ν) obtained from the data in the upper rectangular window clearly shows the filling 

factors ν  = − 1/3, − 2/3, which are the most pronounced fractional quantum Hall states in graphene. They are not seen 

in conductance measurement.

The compressible QD scenario described above is valid only when the nonlinear screening of the disorder potential 

produces compressible QDs isolated by the insulating barriers. Despite the recent observation of the single charge 

tunneling behavior on a compressible QD using STM tip [107] a direct transport measurement through the network of 

QDs is desirable for a better understanding on the influence of the network of QDs to the conductance fluctuations. It 

(5.6)

alt-text: Fig. 5.21

Fig. 5.21

Schematic illustration of the data analysis using C (ν).

alt-text: Fig. 5.22

Fig. 5.22

Correlation function.

From D.S. Lee, V. Skakalova, R.T. Weitz, J.H. Smet, K. von Klitzing, Transconductance fluctuations as a probe for interaction-induced 

quantum Hall states in graphene, Phys. Rev. Lett. 109 (2012) 056602.



is, however, prohibited by the presence of the edge channel in parallel to the network of QDs. A direct transport 

measurement on the network of QDs was however possible because the quantum Hall insulating behavior emerges at 

high magnetic fields. The true insulating behavior originates from the absence of the edge states due to the valley 

symmetry breaking for the zero energy states [35]. The differential conductance, dI
ds

/dV
ds

, as well as a color

greyscale rendition of it as a function of V
bg

 and V
ds

 are shown in Fig. 5.23. The stability diagram of the differential 

conductance exhibits Coulomb diamond structures, which unambiguously proves the existence of the tunnel barriers, 

which isolate the QDs. The estimated length scale of the QDs from the diamond structures in Fig. 5.23 ranges from 160 

to 400 nm, which can be regarded as the disorder length scale because the QDs formation is due to the nonlinear 

screening of the disorder potential. It was estimated from the diamond structures as d
2  =  4C

g
/(πeα), where 

 and where s
p

 and s
n

 are the positive and negative slopes of diamond structures. The disorder 

length scale can also be comparable to the mean free path (l
mfp

) of the system. From the conductivity near the charge 

neutral point without magnetic field for our suspended sample, 3.5e
2
/h, we deduce l

mfp
 350  nm [118], which is 

consistent with the length scale estimated from Coulomb diamonds. The irregularity of the diamonds can be either the 

result from the network of QDs or the result from the nondisk-like shape of the QDs where the chaotic resonance has 

been predicted [102].

5.6 Conclusion

Recent advances in the progress to control the electronic properties of graphene are significant, and they show promise 

for not only the applications of electronic devices such as transistors but also of quantum computational devices. 

However, the physics behind the single charge behavior in graphene has not yet been fully uncovered. For instance, it 

is not yet possible to open a band gap of graphene on a bulk scale. Attempts for the realization of single electron 

transistors or quantum dots of graphene by size control were reviewed in . In addition, the effect of single 

charge tunneling on mesoscopic transport and how the localization of individual charges can be captured in 

macroscopic devices in discussed in . How massless particles obey the linear dispersion relation is the key 

point to understand in regard to single charge transport in graphene, and such an understanding will provide insight 

toward the future of nanoelectronics.
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Gate dependence of dI ds  = dV ds  (top) and greyscale rendition of dI ds  = dV ds  as a function of V ds  and V g  (bottom).
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Abstract

The chapter describes single charge tunneling behavior in graphene devices. Coulomb blockade phenomena observed in graphene 

constrictions, patterned single electron transistors, and graphene nanoribbons are compared with those observed in the conventional 

single electron transistors with metallic islands. This chapter also covers the phenomena when compressible quantum dots are 

formed in graphene in the quantum Hall regime such as mesoscopic conductance fluctuations due to single charge tunneling into/out 

of the quantum dots.

Keywords: Graphene; Single charge tunneling; Quantum dots; Single electron transistors; Quantum Hall effect; 

Localization; Compressible quantum dots
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