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Abstract This paper addresses the topic of 
modeling of highly nonlinear power electronics 
systems. As  an application of identifying an 
unknown plant in power electronics systems, an 
empirical data modeling approach is presented 
which aims at generating discrete-time small-signal 
linear equivalent models for a general class of 
converters, which includes resonant and PWM 
type converters. The resulting small-signal model 
describes the converter as a linear time invariant 
system, and the knowledge of the identified linear 
system can be applied to the switching converters 
for constructing feedback controllers. The 
identification results are compared with the 
analytical model and experimental data. 

I. INTRODUCTION 

Switching converters are inherently nonlinear 
oscillatory systems. A switching converter consists of 
linear resistors, inductors, capacitors, as well as 
nonlinear magnetic components and semiconductor 
switches. Especially, due to the severe nonlinear 
characteristics of magnetic components and switching 
devices, it is very difficult to design stable feedback 
controllers using exact mathematical descriptions of 
switching converters. Usually, switching converters 
have too many complex nonlinear differential 
equations to be solved. Therefore, it is generally not 
feasible to construct design guidelines to regulate a 
converter in a large-signal domain. Instead, small- 
signal models are commonly used to provide dynamic 
information of the switching converters for control 
purposes, where the converter can be linearized 
around a specific operating point. Since the control 
issues of switching converters can be treated very 
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effectively by small-signal analysis, the resulting 
small-signal models are very bseful to design 
engineers on the ground that all of the relatively 
simple techniques of linear system control theory can 
be applied easily to the small-signal model. 
Therefore, practicing engineers may acquire the 
physical insight of the given system for developing a 
proper feedback controller. From this small-signal 
model important specifications such as audio 
susceptibility, loop-gain and output impedance are 
calculated. Additionally, these specifications can be 
easily measured whenever the small-signal model 
and/or the controller based on this model needs to be 
verified experimentally. 

For the past decades, state-space averaging 
is a commonly used modeling approach for small- 
signal modeling of switching converters. This method 
was originally proposed to model PWM converters. 
For properly designed PWM converters, the natural 
frequencies of each linear circuit are much lower than 
the switching frequency. This provides justification of 
the linear ripple assumption. Under the assumption 
that the natural frequency of the converter power 
stage is well below the switching frequency, the 
averaging technique can provide approximate linear 
solutions of a nonlinear averaged state equation. 
Then, the small-signal model can be derived by 
"persistently exciting" input signals around a 
particular operating point. The obtained small-signal 
model has a continuous form. The model can predict 
the dynamics of PWM type converter power stages 
accurately up to the half of the switching frequency. 
The analysis of state-space averaging is simplified by 
using a circuit averaging technique based on three- 
terminal PWM switch model [l]. However, this 
averaging concept does not apply for resonant 
converters and multi-resonant converters where the 
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energy of state variables is carried mainly by 
switching harmonics but not by the low frequency 
components as in the case of PWM type converters. 
For resonant converters and multi-resonant converters, 
the dynamics are often determined by the interaction 
between the switching frequency and the natural 
resona.nt frequency of the converter [2]. This 
interaction cannot be investigated using averaging 
concept because it eliminates the switching frequency 
inforrnation. 

Another systematic modeling method to 
obtain small-signal models for switching converters 
is a discrete-time (D-T) or a sampled-data modeling 
approach. By solving the nonlinear state equations in 
the tirne-domain, a steady-state analysis can be done 
under given operating conditions. Perturbation of this 
nonlinear equation around a specific operating point 
provides the small-signal dynamics with a sample 
interval the same as the switching frequency. 

In this paper, small-signal modeling of a 
PWM type boost converter and a series-resonant 
conveirter to apply the identification technique. This 
empirical data modeling approach is generally simpler 
and independent of type of converters. Also, since 
this approach is a model-free identification, internal 
structure need not be known as long as one can 
obtain the data either through a time-domain 
simulation or a hardware measurement. This approach 
is also very effective to generate a reduced order 
model to represent a complex subsystem in a 
distributed power system. 

11. SYSTEM IDENTIFICATION 

In his often referenced paper [3] Luenberger 
established nominal structures for a multi-input, 
multi-output (MIMO) system. The method is based 
on the concept of either controllability or 
observability indices. For present purposes only the 
observability form will be discussed. Beginning with 
an assumed D-T state space model, 

(1) 
x(k+l) = Ax(&) + Bu(&), 

y(k) = Cx(&) + DO(&) 
x(0) 

where x is an (nxl) vector, U is an (mxl) vector, y is 
a (pxl) vector and the matrices A ,  B ,  C and D have 
corresponding compatible dimensions, the 
observability matrix is given by the matrix Qo, 

The dimensions of Q ,  are (np n). For an observable 
system Q, must have rank n and, therefore, n linearly 
independent rows. The Luenberger form identifies 
the first n linearly independent rows from the top. 
The observability index for the pair {A,C]  is the 
smallest integer, v, such that 

rank[CT A'C' ... (AT)'-'CT] = n (3) 

Observability indices (plural) are defined as the set of 
integers (v,}, 1 < i < p ,  identifying the lengths of the 
chains of each row of C .  For instance, the rows 
generated by row i are linearly independent up to 

(and including) ci Avi-'. As an aid to the discussion, 
the crate diagram is introduced as a means of 
visualizing which n linearly independent rows of Q ,  
are being chosen [4]. As an example of a 3-output 
system of order 7, consider Fig. 1. 

A" 

A i  

A2 

A3 

A4 

Fig. 1. Example of a Crate Diagram 

In this case the matrix of selected rows, T, becomes 

[ c ~ ~ c ~ ( c ~ A ) ~ ( ~ A ) ~ ( ~ A * ) ~ ( ~ A ~ ) ~ ] ~  (4) 

Note the correspondence between the partitions of T 
in Eq.(4) and the units in the crate diagram of Fig. 1. 
Using T as a similarity transformation matrix results 
in the equivalent state space model given by A, = 
TAT-', Bo = TB, C, = CT-' and Do = D. This 
representation is in the pseudo-observability form 
( P O F )  state space model corresponding to the indices 
{2,4,1], as indicated by the number of units in the 
three columns of the crate. The structure of the 
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A,= 

and 

0 0 0 1 0 0 0  
0 0 0 0 1 0 0  
x x x x x x x  

x x x x x x x  

x x x x x x x  
0 0 0 0 0 1 0  
0 0 0 0 0 0 1  

C O =  0 1 0 0 0 0 0  i::~::~:l 
The matrix A, contains the remaining rows of the 7x7 
identity matrix in rows 1, 2, 5 and 6. Its other rows 
may have arbitrary elements. The difference between 
a POF and the corresponding Luenberger form is that 
Luenberger re-ordered the selected rows by the 
columns of the crate before performing the similarity 
transformation, a step which is not only unnecessary, 
but counter productive in that the resulting structure 
is more complex! 

The idea behind the POFs is that the 
selection of the n linearly independent rows of Q ,  can 
be done in many ways, according to the indices 
{ n,,n2, ..., n,,}, representing the number of units in the 
p-columns of the crate. The indices must, of course, 
sum to n. Each possibility must be checked for 
"admissibility," i.e. that the resulting n-rows are, in 
fact, linearly independent. The admissible POFs are 
then all possible structures for the MIMO system. 
Investigation of the various POFs for a particular 
system quickly indicates that some forms are better 
than others in terms of the condition number of the 
transformation matrix T.  A poorly conditioned 
transformation matrix typically results in a large 
range of parameter values in the POF, as well as loss 
of numerical accuracy in the model. 

In Section I11 the deterministic identification 
algorithm is reviewed [5] .  The identification 
technique presented in this paper, modified to 
accomodate noisy data, is given in Section IV. 

111. DETERMINISTIC IDENTIFICATION 

In Section I1 the POF was introduced. The 
key is in the set of indices specified for the POF in 
that everything related to the system structure is 
determined from them. In practice it is useful to 
establish an algorithm which will construct the POF 
given a basic state space model and the information 
of the indices. The reader is referred to Reference [ 5 ]  
for details. 

System identification from input/output data 
assumes that the input signals are "persistently 
exciting," i.e. that the system is sufficiently excited to 
exhibit all of its modes in the corresponding output 
signals. In addition, it is clear that only the 
controllable and observable part of the system can be 
identified from input/output data. To develop the 
necessary background, consider the desired result of 
the identification, namely, an order-n D-T system 
with m-inputs and p-outputs: 

where R, = {A,, B,, CO, Do)  is in a POF 
corresponding to a set of admissible POI, v = {v!). 
From Eq.(6) we may write 

Now we let r = v = max{vi). Clearly, Eq.(7) holds 
for any integer t = [O, N-r ]  and can be rewritten as 

where y, and U, are (v+l)p and (v+l )m dimensional 
columns containing output and input vectors y ( t+ j )  
and u(t+j),  j = [O, VI. The matrix Q,, is the 
observability matrix of the pair {A,, CO) ,  while H is 
the ( r + l ) p  x ( r + l ) m  lower block triangular matrix 
containing along the main diagonal the (p m )  blocks 
D,. The other nonzero blocks of H are the pxm 
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dimensional Markov parameters: 

Our goal is to eliminate from Eq.(7) the x ( t )  terms, 
thereby obtaining an expression which relates the 
sampled data to the elements in R,. 

Equation (7) can be considered to represent 
(v+l)p scalar equations in the samples 

i.e. the ih component of the output vector y(t+j),  i=[l ,  
p], j=[O, VI. It can be shown that Q,, has n rows of 
an identity matrix and p rows that correspond to the 
rows of A, with non-zerolnon-unity elements. 
Furthermore, the locations of these rows are 
determined by the information of the indices used to 
construct "selector matrices." The various selector 
vectors and matrices used in this development are all 
derivable from the set of indices. 

Premultiplying Eq.(8) by the selector 
matrices S,: and S,: defined in [5], we obtain, 
respectively, 

yIr = ~ ( t )  + H,u, , y2, = A,x(r) + %U, (11) 

where. 

Yl, = SLY, 3 Yz, = SLY, 

with 

Eliminating x ( t )  from Eq.( 1 l), 

The matrix A,. in Eqs.(ll) and (12) is a (pxn) matrix 
containing the rows of A, with non-zero non-unity 
elements, whose locations in A, are specified by the 
selector vector v, .  Equation (12) may be expressed 
in a more concise form by 

Yzr = [ Nr A, 321 (13) 

where N, = H, - A,H, is a p x (v+l)m matrix and z, 
is an h-dimensional vector containing U, and yl,, 

where h = (v+l)m + n. Equation (13) is referred to 
as the identification identity since it relates 
input/output data samples arranged into columns y2 ,  
and z, to parameters of the state space representation 
R,, i.e. in the matrices A,, B, and Do. 

We now consider the case where only 
inputloutput data is available, without a given system 
model. The process of creating a system model from 
the data is called system identification. A 
deterministic D-T system identification will be 
performed by calculating an observable form state 
space model R ,  = {A,, B,, C,, D,] from a set of input 
and corresponding output data with the restriction that 
the input signals are "persistently exciting." The 
technique is based on the identification identity, 
Eq.( 13). 

In order to determine N, and A,, as well as 
to select an appropriate set v of indices, the following 
is suggested. Concatenate the vectors yz, and z, 
corresponding to samples t=0,1,2, ..., q-1 into (p x q) 
and (h x q) matrices Y, and Z ,  respectively, (where 
it is assumed that h < q and q+v < N ) ,  yielding: 

YZ = [ N, I A , ] Z  (14) 

where 

U } ( v + l ) m  

= [ y j  1" 

One can quickly conclude that the input 
sequence used to generate the response is 
"sufficiently rich" if and only if the matrix U is full 
rank, i.e. 

ranku = ( v + l ) m  (15) 

and that the set of indices is admissible if Z is of full 
(row) rank, i.e. if 

d Z  = h  (16) 

If the condition number of Z is relatively large, it 
might be advisable to try another set of indices 
which, through a different set of selector vectors and 
matrices, could lead to a better conditioned Z .  
Finally, the solution of Eq.( 14), containing the 
parameter information for R,,, is 
which reduces to Y,Z-' if the matrix Z is square. 
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[ N, I A,] = Y2ZT(ZZT)- '  

Using the natural structure described above, the POF 
realization R, can be constructed from the result of 
Eq.(17). In the next section the technique for system 
identification is explained. 

IV. MODELLING OF BOOST CONVERTER 
AND SERIES RESONANT CONVERTER 

As an example of the small-signal modelling 
of nonlinear dynamic systems under study, an open- 
loop boost converter and a series resonant converter 
(SRC) are selected. Since existing state-space 
averaged model is quite accurate up to the half of the 
switching frequency, the proposed modelling 
approach can be compared and verified its 
effectiveness and accuracy. 

A. Open-Loop Boost Converter 

Fig. 1 illustrates a typical two-state boost 
converter example. 

L I m  I I  .om 

Fig. 1. Boost Converter (with PWM Control over 
the Switch) 

Three input variables and two output variables 
represent the state of the system dynamics: 0, (the 
variation of input voltage), i, (the variation of input 
current), and 8 (the variation of duty cycle), p, (the 
variation of output inductor current), Oc (the variation 
of output capacitor voltage). This converter was 
designed to operate at a nominal duty ratio of 0.6 
with an efficiency of 70.5%. The exact discrete state- 
space equation including all the nonlinearities are 
used for the time-domain simulation. 

modeling procedure is summarized as follows: 
As described in detail Reference [6] ,  the 

Step 1: A small range of elaborate input 

perturbations around a nominal equilibrium point is 
injected at the inputs of the boost converter, such as, 
O,, To and d, and then the corresponding output 
responses are measured in physical unit. Generally, 
small-signal modeling of an unknown system, unlike 
the above boost converter, must be done using a 
circuit simulation tool such as SPICE or the 
measurement data from the hardware directly. 
Therefore, extracting information from data is not a 
straightforward task. In addition to the decisions 
required for model structure selection and 
generalization, the collected data need to be handled 
carefully for the robust identification process. The 
levels in these raw inputs and outputs should be 
matched in a consistent way. The rpean levels must 
be subtracted from the input and output sequences 
before the estimation. The best way is to match the 
mean levels corresponding to a system equilibrium. 

Step 2: The second step is to determine a 
nominal range of the system order with the restriction 
that the input signals are "persistently exciting." From 
the assumption that the order of the system is 
unknown, to determine the system order from raw 
data, a rank test is done. However, due to the 
nonlinearity of the system with added noise, a rank 
test may not be reliable. 

Step 3: The third step is to construct an 
ARMA model with inputs representing both the 
present inputs and delayed versions of the inputs and 
outputs to capture the dynamics of the systems. The 
method is determining an equilibrium point to 
identify a linearized system about this equilibrium 
point. A classical method of multivariable system 
identification which utilizes the possible structures of 
the system in order to achieve a model that optimally 
generalizes over the available input/output data. 

Step 4: The final step, a deterministic D-T 
system identification, is performed by calculating an 
observable form state-space model R,  = {A, B, C, D} 
from the identified ARMA model. The small-signal 
modeling process is shown in Fig. 2 

Fig. 2. Small-Signal Modeling Process 

Using the proposed identification technique, a small- 
signal model of the boost converter is developed as 
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the following ARMA model: 

- 1 5 -  

where y, = TI, y2 = O,, U, = O,, U:, = T,, and ug = 8. 
From Eq. (18) it is noted that delayed inputs and 
outputs contribute to the "predicted" output. Since the 
boost converter is second order, the ARMA model of 
the linearized system is expected to have u,(k), u,(k- 

u2(k), ~ ~ ( k - 1 ) ~  U&), uAk-11, ydk-1) and y2(k-1) 
terms. For reference, the eigenvalues of the C-T 
equivalent model of Eq. (18) are (-1166.6, -347.5} 
comparing with those of state-space averaged model 
of the exact system equation, (-1 153.1, -346.9). 
When duty cycle, 8, is modulated, the magnitude and 
the phase of the control-to-output transfer function of 
the identified model are compared against the state- 
space averaged model of the system in Figs. 3 and 4, 
respectively. The obtained small-signal model is 
accucate up to the half of the switching frequency, i.e. 
25KH[z (Nyquist frequency). 

-20 ' ' " > ' a ' '  ' " " j -  ' " ' a -  ' " , , , L L  

, , , , , , , , , , 

101 IO?  1 0 ~  10'1 IO '  

H L  

Fig. 4. Phase: Identified (solid), 
State-Space Averaging (dotted) 

B. Series-Resonant Converter (SRC) 

The small-signal modeling approach for a 
series-resonant converter (SRC) based on the 
proposed robust hybrid identification technique is 
discussed in this section. Among several approaches 
for modeling a SRC, the well-known state-space 
averaging technique does not show promising results 
in modeling for resonant converters, where the energy 
of the system is carried mainly by the switching 
frequency harmonics (not by the low frequency 
components as in the case of PWM converters). Since 
the dynamics are often determined by the interaction 
between the switching frequency and the natural 
frequency of the resonant converter, state-space 
averaging eliminates the useful information of this 
interaction between both frequencies. Therefore, the 
previous identification procedure was applied to the 
input/output data streams of nonlinear system 
equations of a SRC [6]. The identified model was 
compared with the analytical result to verify the 
correctness of the procedure. Figs. 5 and 6 show the 
control-to-output transfer function of the SRC 
compared against the measured data. The numerical 
results are in good agreement with the measured data. 
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, , , , , , , , ,  ,-L, IO '  
IO' , 1 1  IO' 1 0 2  

H I  

Fig. 6. Magnitude: 
Identified (solid), Measured (*) 

~ 

In? IO' IO' 

H7 

Fig. 7. Phase: 
Identified (solid), Measured (*) 
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