Automatic Visual Attention System 自動注視檢出

2009.11.23

朴 珉徹 Park, Min-Chul 韓國科學技術研究院

KIST SIAT

Contents

- Introduction
- Previous works
- Problems
- Object
- Proposed Methods
- Experiments
- Conclusion

Perceptive Visual Attention Model

- Human behavioral system has some patterns when it makes a decision and human visual system also follows the characteristics
- If we can provide users with some mechanism to support making a decision of the viewpoint it would be a very helpful interface
- In the end it should be generated by a model that imitates human visual system to bring out some similar results we do

The human Perception

Select attention region from a whole input image

On Computer vision

- Detects a certain region that attracts attention
 - The region is supposed of having certain useful information
 - Concentrates resource to some selected regions
 - Reduces computational burden, Uses resources efficiently
- Builds Visual Attention System similar to human perception
 - It becomes interesting topic in various research communities.
 - (3D Display, Multimedia processing, Computer Vision...)

DataBase

Using Spatial Saliency

Spatial Attention

texture

Spatial Salient map

Attention

Using Temporal Saliency

Temporal Attention

Using Both

- Integration of Spatial map and temporal map
- Get Spatio-temporal Salient map

Previous works

Attention Detection in Video Sequences Using Spatiotemporal Cues (2006)

- Temporal attention
 - To detect motion, utilizes feature(interest) points instead of optical flow
 - Correspondences are established between the feature(interest)-points (frame(t-1), frame(t))
 - using Scale Invariant Feature Transformation (SIFT)
- Spatial attention
 - Uses color histogram
 - Similar saliency value distribute widely -> overlapping attention points

Previous works

Salient Human Detection for Robot Vision (2007)

- Human detection based on Visual Attention System(VAS) using spatial saliency & temporal saliency
- Temporal attention
 - Modified block matching method
 - Obtain probability distribution of motion
 - No consideration for direction of motion

 Example of VAS application for Robot vision

Feature Extraction and Integration Process

■*EF*¹

■ **F**³

■*S*²

■*EF*²

■*F*²

F¹

S¹

⇒

■*EF*³

Previous Works(Spatial Analysis)

Problems

Problems

- Spatial salient map uses low-level features
 - Difficulty of understanding meaningful relations of objects
 - Different from the response of human perception
- Compensate for spatial salient map by using motion information
 - Reduction of noise information that deteriorates accuracy of temporal saliency
- - How to define and make a difference among some salient regions under specific circumstance
 - Some objects show similar features (motion, color...)
 - **Objects occlusion**

Object

Prioritization and Segmentation

- Segmentation of salient regions
 - These regions may have similar spatial features, similar temporal features
 - Need to prioritize
- When some objects are partially occluded or overlapped
 - Needs to keep individuality of each attention region

Effective Noise Elimination

- Eliminate meaningless(noise) motion information effectively
 - To obtain temporal salient map with meaningful motion information
 - Enhance Quality of Spatio-temporal salient map

Proposed Method

Prioritization and Segmentation

- Spatial feature + Temporal feature + 3D-Depth information
 - 3D-Depth value : additional information of projected 2-D real world
 - To compensate 2-dimensional Spatiotemporal saliency map for improved results
- Search minSAD (sum of absolute difference) block form stereo image
 - Generate disparity map
- Segmentation Spatiotemporal salient map by shape of distribution of disparity value map
 - Disparity ↑ -> Priority ↑
 - Saliency value ↑ -> Priority↑

In Claire image sequence, mouth and eye regions were marked as the most conspicuous regions (62.5%) from human experiments. If mouth and eye regions are included in the face region it takes up 70%.

Table 3. Claire sequence

Priority		1 st		2 nd		3rd	
Male:	20	Mouth:	7	Mouth:	6	Mouth	1
		Jacket:	5	Hair:	4	Hair:	1
		Eyes:	4	Eyes:	3		
Female:	20	Mouth	8	Mouth:	6	Hair:	1
		Eyes:	6	Hair:	6		
		Jacket:	3	Eyes:	3		
Total:	40	Mouth:	15	Mouth:	12	Mouth:	1
		Eyes:	10	Hair:	10	Hair:	1
		Jacket:	8	Eyes:	6		
		Face:	3	Jacket :	3		
		Hair:	2	Earring:	2		
		Earring:	2	Check:	1		
				Neck:	1		

In Pairs image sequence, ball region is marked as the most conspicuous one (60%) by human observers. The ball is detected with highest conspicuity also from the proposed attention module.

Table 4 Paris sequence

Priority		1 st		2 nd		3rd	
Male:	20	Ball:	12	Pen:	8	Pen:	3
		Pen:	2	Ball:	6	Man's face:	2
		Books:	2	Woman's face:	3	Ball:	1
Female:	20	Ball:	12	Pen:	7	Pen:	2
		Books :	2	Ball:	5	Necktie:	1
		Woman's hand:	2	Necktie:	2	49) 	
Total:	40	Ball:	24	Pen:	15	Pen:	5
		Books:	4	Ball:	11	Man's face:	2
		Man's face:	2	Woman's face:	3	Ball:	1
		Woman's face:	2	Necktie:	2	Necktie:	1
		Woman's hand:	2	Cup:	2	2	
		Pen:	2	Books:	2		
		Documents:	1	Documents:	2	3	
		Man's hair:	1	Bracelet:	1	3.	
		Table:	1	Doll:	1		
		Mouth:	1				

In Highway image sequence, road and traffic signs are marked as the most conspicuous regions (87.5%). Same regions are also detected from the proposed attention module.

Table 5 Highway sequence

Priority		1 st		2 nd		3rd	
Male	20	Traffic sign :	9	Road sign:	6	Traffic sign:	1
		Road sign:	8	Traffic sing:	6	Black object:	1
		Clouds:	3	Clouds:	4	in the second	
Female	20	Road sing:	13	Traffic sign:	8	Clouds:	3
		Traffic sign:	5	Road sing:	6]	
		Clouds:	1	Clouds:	4		
Total	40	Road sing:	21	Traffic sign:	14	Clouds:	3
		Traffic sign:	14	Road sign:	12	Black object:	1
		Clouds:	4	Clouds:	8	Traffic sign:	1
		Highway:	1	Black object:	1		
				Asphalt:	1		
		2	1	Guardrail: 1			

Proposed Method

Noise Elimination 2

- Use Flag Map
- To prevent flickering (global-area noise) on time domain
 - at Frame(t), record/update state of motion existence to FlagMap
 - at t+1, refer to Flagmap(t)

Experiments

Prioritization & Segmentation

- Separate and Prioritize each salient region
 - Based on depth value & saliency value

Experiments

Comparison

(a) Without Depth informtation

(b) With Depth information

Experiments

Comparison

(a) Without Depth

(b) With Depth

Conclusion

- Generates a spatiotemporal salient map based on spatial & temporal features, and compensates for its inaccuracy using 3d depth information
- If some salient regions are partially occluded and have similar saliency value, each salient region is separated and prioritized sequentially
- To eliminate temporal noise and improve the accuracy of temporal saliency, psychological studies and Flag map are used. As a result of this, temporal saliency is obtained with higher accuracy
- Can not apply real time-processing system on high resolution image (computation for motion vector, stereo depth, convolution..)
 High accuracy / Low speed