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NIC Series, Vol. 34, ISBN-10: 3-9810843-0-6,
ISBN-13: 978-3-9810843-0-6, pp. 149-152 , 2006.

c© 2006 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume34



An Improved Evolutionary Strategy for Protein Structure
Prediction

Srinivasa Murthy Gopal1, Kyu Hwan Lee2, and Wolfgang Wenzel1

1 Institut für Nanotechnologie,
Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany

E-mail: {gopal, wenzel}@int.fzk.de

2 Korea Institute of Science and Technology,
Supercomputational Materials Simulation lab,

130650 Seoul, South Korea
E-mail: khlee@fireworks.kist.re.kr

We propose a new evolutionary strategy for protein structure optimization in a free energy land-
scape. This strategy is an improved version of existing basin hoping technique where multiple
independent trajectories are used. In the new method, thesetrajectories depend on each other.
This technique is implemented as a simple master-client model for distributed computing. We
demonstrate advantage of purposed method in terms of computational effort and structure di-
versity.

1 Introduction

Protein structure prediction(PSP) is regarded as one of thegrand computational chal-
lenge. Ab initio protein structure prediction is one promising approach to obtain the
native protein conformation from first principles. We use a free energy forcefield1

with combination of several optimization methods2 to predict the native structure of
protein. We identify the native structure as the lowest energy conformation in our
forcefield. The basin hopping technique(BHT)3 has been our work horse for the structure
optimization. We have predicted native structures of several proteins including 20
amino acid trp-cage protein, 40-amino acid headgroup of theHIV accessory protein
using the BHT4. Though BHT proved to be a good optimization method, it has several
drawbacks. Typically the independent BHT trajectories findidentical structures cor-
responding to one local(global) minima of free energy landscape. There exists also a
problem of BHT simulations going astray. We had previously identified this problem
and proposed an evolutionary strategy5 which eliminates the problems associated with
BHT. In this current work we propose an improved version for protein structure prediction.

2 Method

We have generalized the BHT approach to a population of size Nwhich is iteratively im-
proved by P concurrent dynamical processes. The populationis evolved towards a optimum
of the free energy surface with a simple evolutionary strategy(ES). The strategy balances
the energy improvement as well as the population diversity.The conformations are drawn
from the population and subjected to an annealing cycle. At the end of each cycle the
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resulting conformation is either integrated into theactivepopulation or discarded. The al-
gorithm was implemented as a simple master-client model in which the idle clients request
a task from the master. The master maintains the active conformation of the population
and distributes the work to the clients. Each step in the algorithm has three phases.

• Selection A conformation is drawn randomly from theactivepopulation. We have
used a uniform probability distribution with active population of 20 conformers.

• Annealing cycle We used a geometric cooling schedule withTstart drawn from a
uniform or exponential distribution andTend fixed at 2K. The number of steps per
cycle is increased as105 ×

√

Ncycle.

• Population UpdateWe have adjusted the acceptance criterion for newly generated
conformations to balance the population diversity and energy enrichment. We define
the close structures as conformation which have bRMSD(backbone RMSD) of 3̊Ato
each other. The master performs one of the following operations.

– Add The new conformation is notcloseto any structure in the population, it is
added to the pool.

– Replace If the new conformation isclosestto some structure in the population,
it replaces that structure provided its re-weighted energy(see below) is less than
the closest one.

– Merge If the new conformation has severalclose structures, it replaces this
group of structures provided its re-weighted energy is lessthan the best one of
the group.

We have used an energy criterion for theReplaceandMerge operations during popu-
lation update. We re-weigh the energy of the new conformation(Erew) as

Erew = A× tanhD where D =
Ebest− Enew

A

Enew is the actual energy of the new conformation, Ebest is the current best low energy.
We have also optimized the number of concurrent processes with respect to the size of
active population. We have investigated the folding of a small betapeptide, tryptophan
zipper (PDBID:1LE0) for this purpose. We fixed the size of active population to 20 and
used 10,20,30,40,50,60 concurrent processes(Fig 1). We found an optimal number of
processes to be approximately equal to two times the active population. We confirmed this
for population size of 5 and 10.

3 Results

We have used the improved evolutionary strategy for predicting the native structure of a 12
amino acid tryptophan zipper(PDBID:1LE0). The table belowshows the top 10 structures,
their energies, secondary structure and bRMSD with respectto experimental structure.
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Figure 1. Left : The lowest Energy vs the ES cycle for different processes. Right : The predicted(red) and
experimental(green) structures.

Name Secondary structure Energy bRMSD
(kcal/mol) Å

EXP CEEECSSSEEEC
1 CEEECSSCEEEC -28.360 1.220
2 CCCEECSSCEEC -21.350 3.800
3 CEEETTEEECCC -19.470 3.790
4 CEESSSSSCEEC -19.130 3.270
5 CCCEECSSCEEC -19.040 3.630
6 CCCCCTTTTCCC -18.820 6.170
7 CCCTTTTCCCCC -18.450 4.510
8 CCCCBTTBCCCC -18.120 3.360
9 CCCHHHHHHHHC -17.850 6.880

10 CCCCCTTTTCCC -17.600 6.370

4 Conclusions

We have developed and applied an improved evolutionary strategy which evolves a set
of conformers to population of low energy diverse structures. We have optimized the al-
gorithm and used it for tertiary structure prediction of a small beta hairpin. The method
presented here is well suited for the distributed computational architecture.
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