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We recently developed an all-atom free energy forcefield=(Rff for protein structure pre-
diction with stochastic optimization methods. We dematett that PFFO1 correctly predicts
the native conformation of several proteins as the globihmpn of the free energy surface.
Here we review recent folding studies, which permitted tygroducible all-atom folding of
the 20 amino-acid trp-cage protein, the 40-amino acid thedix HIV accessory protein and
the sixty amino acid bacterial ribosomal protein L20 withaaisty of stochastic optimization
methods. These results demonstrate that all-atom prai&ing can be achieved with present
day computational resources for proteins of moderate size.

1 Introduction

De novoprotein tertiary structure prediction (PSP) and the elatiich of the mechanism
of the folding process are among the most important outstgratoblems of biophysi-
cal chemistry2. The many complementary proposals for PSP span a wide rdnge-o
resentations of the protein conformation, ranging fromrsearained models to atomic
resolution. The choice of representation often correlaiés the methodology employed
in structure prediction, ranging from empirical poterifdr coarse grained modéléto
complex atom-based potentials that directly approximiagephysical interactions in the
system. The latter offer insights into the mechanism ofgirostructure formation and
promise better transferability, but their use incurs largmputational costs that has con-
fined all-atom protein structure prediction to all but theatlerst peptides®.

It has been one of the central paradigms of protein foldimag pinoteins in their native
conformation are in thermodynamic equilibrium with theiveonment. Exploiting this
characteristic the structure of the protein can be prediojdocating the global minimum
of its free energy surface without recourse to the foldingaiyics, a process which is
potentially much more efficient than the direct simulatidnttee folding process. PSP
based on global optimization of the free energy may offeradle alternative approach,
provided that suitable parameterization of the free enefdlye protein in its environment
exists and that global optimum of this free energy surfaage i found with sufficient
accuracy.
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We have recently demonstrated a feasible strategy fort@athgorotein structure pre-
diction®**in a minimal thermodynamic approach. We developed an athdtee-energy
forcefield for proteins (PFF01), which is primarily basedpdysical interactions with im-
portant empirical, though sequence independent, cooretti We already demonstrated
the reproducible and predictive folding of four proteirtse 20 amino acid trp-cage pro-
tein (1L2Y)>*?, the structurally conserved headpiece of the 40 amino abidadcessory
protein (1F41§% 12 and the sixty amino acid bacterial ribosomal protein ¥20n addi-
tion we showed that PFFO01 stabilizes the native conformatad other proteins, e.g. the
52 amino-acid protein A5, and the engrailed homeodomain (LENH) fr@osophilia
melangastef.

1.1 Forcefield

We have recently developed an all-atom (with the exceptiapolar CH, groups) free-
energy protein forcefield (PFF01) that models the low-epeanformations of proteins
with minimal computational demah@® 1 In the folding process at physiological condi-
tions the degrees of freedom of a peptide are confined tdontaabout single bonds. The
forcefield is parameterized with the following non-bondeéractions:
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Herer;; denotes the distance between atoms i and j and g(i) the tyfleeadimino acid

i. The Lennard Jones parameteVs;( R;; for potential depths and equilibrium distance)
depend on the type of the atom pair and were adjusted toysatinttraints derived from as
a set of 138 proteins of the PDB databs€:1? The non-trivial electrostatic interactions
in proteins are represented via group-specific dielecorstants 4, ;) 4(;) depending on
the amino-acid to which atom i belongs). The partial chaggesd the dielectric constants
were derived in a potential-of-mean-force apprddcinteractions with the solvent were
first fit in a minimal solvent accessible surface méddphrameterized by free energies per
unit areas; to reproduce the enthalpies of solvation of the Gly-X-Glyity of peptides?.

A; corresponds to the area of atom i that is in contact with acfais solvent. Hydrogen
bonds are described via dipole-dipole interactions inetlid the electrostatic terms and an
additional short range term for backbone-backbone hydrbgading (CO to NH) which
depends on the OH distance, the angle between N,H and O dlerigphd and the angle
between the CO and NH axis

1.2 Optimization Methods

The low-energy free energy landscape of proteins is extgerngged due to the compar-
atively close packing of the atoms in the native structungita®le optimization methods
must therefore be able speed the simulation by avoidingdngingy transition states, adapt
large scale move or accept unphysical intermediates. Henmeport on four different op-
timization methods, the stochastic tunneling meffipthe basin hopping technigtfe?,
the parallel tempering meth&t?” and a recently employed evolutionary technique.
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Figure 1. Overlay of the native(red) and folded (blue) dtrces of trp-cage proteff, the HIV accessory pro-
tein3 and the bacterial ribosomal protein 1220

2 Results

2.1 The trp-Cage Protein

Using the PFFO01 forcefield we simulated 20 independentaaplof the 20 amino acid
trp-cage proteif?® (pdb code 1L2Y) with a modified versions of the stochastiaalimg
method®°. Six of 25 simulations reached an energy within 1 kcal/mdhefbest energy,
all of which correctly predicted the native experimentalisture of the protein(see Fig
1 (left)). We find a strong correlation between energy and RBMiBviation to the native
structure for all simulations. The conformation with thevést energy had a backbone root
mean square deviation of 2.83

We also folded this protein with the parallel tempering noefA. We found that the
standard approach, which preserves the thermodynamilitegqun of the simulated pop-
ulations, did not reach very low energies even for the lomgerature replicas. and intro-
duced the adaptive temperature control. The best finaltsteiassociated with the lowest
temperature in the simulation with 30 replicas had a RMSBalm@n of 2.01A. We found
convergence of the method using eight to thirty replicasvéi@r, a minimal number of at
least eight replicas appears to be required to fold the jprdi@ lower replica numbers it
appears that even the adaptive temperature scheme fadst¢oaje rapid replica exchange
while spanning both high and low temperatures requiredierspeedy exploration of the
free energy surface and the refinement of local minima resedc

Finally we have folded the trp-cage protein protein with lf@sin hopping technique.
with a starting temperature @f, = 800K and a final temperature @f; = 3K the lowest
six of 20 simulations converged to the native structure. taltof 12 of these simulations
approached the native conformation as its estimate of tiimam. While all methods cor-
rectly identify the folding funnel, the basin hopping apgch results in the lowest energies.
Note that the second best simulation has an RMSB of onl§( fio8he native conformation
and loses in energy with less the 0.5 kcal/mol.

2.2 The HIV Accessory Protein

Encouraged by this result, we applied a the modified basipingmr Monte-Carlo with
minimization (MCM) strateg¥2° to fold the structurally conserved 40-amino acid head-
piece of the HIV accessory protéth We performed twenty independent simulations and
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Name| RMSB | Energy | Secondary Structure Content

N 0.00 ¢ cHAHHRHHHHCT ¢ bHHHAHHHHHHHCT ¢c ¢ HHRHHHHHHC
D01 2.34 | -119.54] ¢ HAHHHHAHAHHT ¢bc HHHHRHHHHHHHD HHRHHHHHHHC
D02 2.41 | -117.52 cHAHHHAHAHAHHI ¢ b HHHHAHHHHHHHHHD HHHHHHHHHHC

D03 2.76 | -116.25] ¢ HAHHHHAHAHAT ¢ b HHHHHRHHHHHHHD HHAHHHHHHHC
D04 2.40 | -115.85| ¢ HHHHHHAHAHH bb HHHHAHHHHHHHHHD HHHHHHHHHHC
D05 2.43 | -114.67| cHAHHHHAHAHAT ¢b HHHHHRHHHHHC b HHHRHHHHHHHC

D06 6.48 | -114.06 | ¢ HHHHHHAHHHHC ¢ ¢ b HHAHHHHHHHHHD HHHHHHHHHHC
D07 2.57 | -113.65] ¢ HHHHHHAHAHHT bb ¢ HHHHRHHHHHHHD HHAHHHHHHHC
D08 4.61 | -107.72| cHHAHHHHHHC cI ¢ c HHHHHHHHHHHHH ¢l HHHHHHHHC
D09 4.14 | -106.29| ¢ HHAHHAHHHHHHC bc b HHHHHHHRHDbT ¢ HHHHHHHHHHC
D10 5.92 | -103.88| cHHHHHAHHHHHH ¢ HHHAHHHHHHbcbe el bHAHHHHHHHC

Table 1. Energies (in kcal/mol) of the 10 lowest energy decogtained in the basin hopping simulations of
the HIV accessory protein. The table shows the backbone Ré&tibn to the NMR structure and secondary
structure content. The first row designates the secondargtste content of the NMR structure.

found the lowest five to converge to the native structure {sde (1)}*. The first non-
native decoy appears in position six, with an energy dexiatif 5 kcal/mol and a sig-
nificant RMSB deviation. The table demonstrates that all-émergy structures have es-
sentially the same secondary structure, i.e. position angth of the helices are always
correctly predicted, even if the protein did not fold cothgc

The good agreement between the folded and the experiméntetise is also evident
from Figure (1)(center), which shows the secondary strecalignment of the native and
the folded conformations. The good physical alignment efhiklices illustrates the im-
portance of hydrophobic contacts to correctly fold thistpim. An independent measure
to assess the quality of these contacts is to compare th€sdistances (which corre-
spond to the NOE constraints of the NMR experiments thatrohéte tertiary structure)
in the folded structure to those of the native structure. Wentl that 66 % (80 %) of the
C;-Cg distance distances agree to within one (1.5) standardtitavseof the experimental
resolution.

We also performed a simulation of the HIV accessory protesingithe adapted paral-
lel tempering method. We used 20 processors of an INTEL XEON PC cluster and ran
the simulation for a total 080 x 10° energy evaluations for each configuration, which
corresponds to approximately 500 CPU hours on an 2.4 GHz INXYEON processor.
All simulations were started with random conformationsighitemperatures to allow for
rapid, unbiased relaxation of the structures and the temtypeer distribution. The final con-
formation with the lowest energy/temperature had conwktgevithin 1.23 / 2.46\ back-
bone root mean square (RMSB) deviation to the best knownydedR structure of the
HIV accessory protein. The overlay of the experimental dreddonverged structure (see
Figure (1)) demonstrates the good agreement between thHerpmtions, the difference
in NOE constraints demonstrates that not only short rangiealso long range distances
are correctly predicted. Considering the ensemble of finafarmations, we find many
structures closely resembling the native conformatiore RMSB deviations of the next
four lowest conformations (all within 1.5 kcal/mol of the mrhal energy) have RMSB
deviations of 3.14/2.23/3.78/3.@0respectively to the native decoy.
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Energy | RMSB 3-state secondary structure

0.01 | ccHHHHHHHCccccccHHHHHHHHHHC c cccc e c ¢ HHHHHHE HHHHHHHHHHHHHHC cce
-167.87| 4.64 | ¢HHHHHHHHHHHC ¢ ¢ HHHHHHHHHHHC ¢ c ¢ c ¢ ¢ ¢ ¢ ¢ HHHHHC HHHHHHHHHHHHHHHHC ¢
-166.15| 8.25 | ccHHHHHHHHHHC ¢ ¢ HHHHHHHHHHHC ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ HHHHHC HHHHHHHHHHHHHHHHC ¢
-165.91| 4.41 | ¢HHHHHHHHHHHC ¢ c HHHHHHHHHHHC cccccccccc c HHHe HHHHHHHHHHHHHHHHC ¢
-164.11| 5.54 | ccHHAHHHHHHHC ¢ ¢ HHHHHHHHHHHC ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ HHHHHG HHHHHHHHHHHHHHHHC
-163.99| 3.79 | ¢HHHHHHHHHHHC ¢ ¢ HHHHHHHHHHHC ¢ c ¢ c ¢ ¢ ¢ ¢ ¢ HHHHHC HHHHHHHHHHHHHHHHC ¢
-163.93| 4.04 | ¢HHHHHHHHHHHC ¢ ¢ HHHHHHHHHHHCcccccecccccccce HHHHHHHHHHHHHHHHCC
-163.45| 8.52 | ccccHHHHHHAHHC ¢ ¢ HHHHHHHHHHHC ¢ e ¢ c ¢ ¢ ¢ ¢ ¢ HHHHHE HHHHHHHHHHHHHHHHC ¢
-163.20| 4.37 | ¢HHHHHHHHHHHC ¢ ¢ HHHHHHHHHHHC ¢ c ¢ ¢ ¢ ¢ ¢ ¢ ¢ HHHHHC HHHHHHHHHHHHHHHHC ¢
-162.67| 5.55 | cHHHHAHHHHHHHC ¢ c HHHHHHHHHHHC ¢ c e e ¢ ¢ ¢ ¢ ¢ HHRHE ¢ HHHHAHHHHHHHHHHHHC
-162.52| 3.78 | ¢HHHHHHHHHHHC ¢ ¢ HHHHHHHHHHHCcccccecccceccccc HHHHHHHHHHHHHHHCc

Table 2. Energies (in kcal/mol) of the 10 lowest energy decofythe final population with backbone RMS
deviation to the NMR structure and secondary structureestinf he first row designates the secondary structure
content of the NMR structure.. The letters H and c indicaténaracids in Helix and coil strcuture respectively.
Green letters indicate correct, red incorrect secondacytstre.

2.3 The Bacterial Ribosomal Protein L20

In the course of the simulations on the HIV accessory protgnexplored methods to
share information between the independent basin hoppimgiations in order to improve
the overall convergence. For the 60 amino acid bacteriabomal protein L20 (pdb-code
1GYZ) we thus experimented with the evolutionary technigascribed in the methods
section. Starting from a seed population of random strestwe performed the folding
simulation in three phases: (1) generation of startingctings of the population, (2) evo-
lutionary improvement of the population and (3) refinemdrthe best resulting structures
to ensure convergence.

The energies and structural details of the best ten reguitinformations are summa-
rized in Table (2). Again the best conformation had appreddhe native conformation
to about 4.64 RMSB deviation. In total six of the lowest ten conformatscapproach the
native structure, while four others misfolded. Note that delection criterion for the ac-
tive population (see methods section) precludes the ceccerof the same configuration
to within 3A RMSB, this dominance of near native conformations of thaltensemble is
particularly encouraging.

In order to quantify the overall improvement of native cartduring the simulation,
we defined the native content of the simulated ensemble asghted average of the
deviations of the population and the native conformatioor. & population of size N we
add 100(N-R+1)/N for each near-native decoy (RMSB less #ifgranked at position R
by energy to the total native score of this population. A scof 100 thus corresponds
to a native decoy placed at the top position, while a neavaatecoy at the very bottom
contributes just unity. Non-native conformations conitéonothing. Using this measure
the final population contains in excess of 20% of near nativéarmations, its native score
exceeds 800, increasing sixty-fold during the simulatibages (2) and (3).
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3 Conclusion

Since the native structure dominates the low-energy camdtions arising in all of these
simulation, our results demonstrate the feasibility ofetim protein tertiary structure pre-
diction for three different proteins ranging from 20-60 amicids in length with a vari-
ety of different optimization methods. The free energy apph thus emerges as viable
trade-off between predictivity and computational fedgibiWhile sacrificing the folding
dynamics, a reliable prediction of its terminus, the natieaformation — which is central
to most biological questions — can be achieved.

The computational advantage of the optimization approtaihsfrom the possibility
to visit unphysical intermediate conformations with higkeggy during the search. This
goal is realized with different mechanism in all of the enygld stochastic optimization
methods. In the stochastic tunneling method the nonlimaastormation of the PES per-
mits the dynamical process to traverse abritrarily highrgybarriers at low termperatures,
in basin hopping and parallel tempering, simulation phase®ry high temperatures ac-
complish the same objective.
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