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We recently developed an all-atom free energy forcefield (PFF01) for protein structure pre-
diction with stochastic optimization methods. We demonstrated that PFF01 correctly predicts
the native conformation of several proteins as the global optimum of the free energy surface.
Here we review recent folding studies, which permitted the reproducible all-atom folding of
the 20 amino-acid trp-cage protein, the 40-amino acid three-helix HIV accessory protein and
the sixty amino acid bacterial ribosomal protein L20 with a variety of stochastic optimization
methods. These results demonstrate that all-atom protein folding can be achieved with present
day computational resources for proteins of moderate size.

1 Introduction

De novoprotein tertiary structure prediction (PSP) and the elucidation of the mechanism
of the folding process are among the most important outstanding problems of biophysi-
cal chemistry1, 2. The many complementary proposals for PSP span a wide range of rep-
resentations of the protein conformation, ranging from coarse grained models to atomic
resolution. The choice of representation often correlateswith the methodology employed
in structure prediction, ranging from empirical potentials for coarse grained models3, 4 to
complex atom-based potentials that directly approximate the physical interactions in the
system. The latter offer insights into the mechanism of protein structure formation and
promise better transferability, but their use incurs largecomputational costs that has con-
fined all-atom protein structure prediction to all but the smallest peptides5, 6.

It has been one of the central paradigms of protein folding that proteins in their native
conformation are in thermodynamic equilibrium with their environment7. Exploiting this
characteristic the structure of the protein can be predicted by locating the global minimum
of its free energy surface without recourse to the folding dynamics, a process which is
potentially much more efficient than the direct simulation of the folding process. PSP
based on global optimization of the free energy may offer a viable alternative approach,
provided that suitable parameterization of the free energyof the protein in its environment
exists and that global optimum of this free energy surface can be found with sufficient
accuracy8.
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We have recently demonstrated a feasible strategy for all-atom protein structure pre-
diction9–11 in a minimal thermodynamic approach. We developed an all-atom free-energy
forcefield for proteins (PFF01), which is primarily based onphysical interactions with im-
portant empirical, though sequence independent, corrections11. We already demonstrated
the reproducible and predictive folding of four proteins, the 20 amino acid trp-cage pro-
tein (1L2Y)9, 12, the structurally conserved headpiece of the 40 amino acid HIV accessory
protein (1F4I)10, 13 and the sixty amino acid bacterial ribosomal protein L2014. In addi-
tion we showed that PFF01 stabilizes the native conformations of other proteins, e.g. the
52 amino-acid protein A5, 15, and the engrailed homeodomain (1ENH) fromDrosophilia
melangaster16.

1.1 Forcefield

We have recently developed an all-atom (with the exception of apolar CHn groups) free-
energy protein forcefield (PFF01) that models the low-energy conformations of proteins
with minimal computational demand17, 10, 11. In the folding process at physiological condi-
tions the degrees of freedom of a peptide are confined to rotations about single bonds. The
forcefield is parameterized with the following non-bonded interactions:
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Hererij denotes the distance between atoms i and j and g(i) the type ofthe amino acid
i. The Lennard Jones parameters (Vij , Rij for potential depths and equilibrium distance)
depend on the type of the atom pair and were adjusted to satisfy constraints derived from as
a set of 138 proteins of the PDB database18, 17, 19. The non-trivial electrostatic interactions
in proteins are represented via group-specific dielectric constants (ǫg(i),g(j) depending on
the amino-acid to which atom i belongs). The partial chargesqi and the dielectric constants
were derived in a potential-of-mean-force approach20. Interactions with the solvent were
first fit in a minimal solvent accessible surface model21 parameterized by free energies per
unit areaσi to reproduce the enthalpies of solvation of the Gly-X-Gly family of peptides22.
Ai corresponds to the area of atom i that is in contact with a ficticious solvent. Hydrogen
bonds are described via dipole-dipole interactions included in the electrostatic terms and an
additional short range term for backbone-backbone hydrogen bonding (CO to NH) which
depends on the OH distance, the angle between N,H and O along the bond and the angle
between the CO and NH axis11.

1.2 Optimization Methods

The low-energy free energy landscape of proteins is extremely rugged due to the compar-
atively close packing of the atoms in the native structure. Suitable optimization methods
must therefore be able speed the simulation by avoiding highenergy transition states, adapt
large scale move or accept unphysical intermediates. Here we report on four different op-
timization methods, the stochastic tunneling method23, the basin hopping technique24, 25,
the parallel tempering method26, 27and a recently employed evolutionary technique.
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Figure 1. Overlay of the native(red) and folded (blue) structures of trp-cage protein28, the HIV accessory pro-
tein13 and the bacterial ribosomal protein L2014.

2 Results

2.1 The trp-Cage Protein

Using the PFF01 forcefield we simulated 20 independent replicas of the 20 amino acid
trp-cage protein29, 6 (pdb code 1L2Y) with a modified versions of the stochastic tunneling
method23, 9. Six of 25 simulations reached an energy within 1 kcal/mol ofthe best energy,
all of which correctly predicted the native experimental structure of the protein(see Fig
1 (left)). We find a strong correlation between energy and RMSD deviation to the native
structure for all simulations. The conformation with the lowest energy had a backbone root
mean square deviation of 2.83Å.

We also folded this protein with the parallel tempering method12. We found that the
standard approach, which preserves the thermodynamic equilibrium of the simulated pop-
ulations, did not reach very low energies even for the low-temperature replicas. and intro-
duced the adaptive temperature control. The best final structure associated with the lowest
temperature in the simulation with 30 replicas had a RMSB deviation of 2.01Å. We found
convergence of the method using eight to thirty replicas. However, a minimal number of at
least eight replicas appears to be required to fold the protein, for lower replica numbers it
appears that even the adaptive temperature scheme fails to generate rapid replica exchange
while spanning both high and low temperatures required for the speedy exploration of the
free energy surface and the refinement of local minima respectively.

Finally we have folded the trp-cage protein protein with thebasin hopping technique.
with a starting temperature ofTs = 800K and a final temperature ofTf = 3K the lowest
six of 20 simulations converged to the native structure. A total of 12 of these simulations
approached the native conformation as its estimate of the optimum. While all methods cor-
rectly identify the folding funnel, the basin hopping approach results in the lowest energies.
Note that the second best simulation has an RMSB of only 1.8Å to the native conformation
and loses in energy with less the 0.5 kcal/mol.

2.2 The HIV Accessory Protein

Encouraged by this result, we applied a the modified basin hopping or Monte-Carlo with
minimization (MCM) strategy8, 25 to fold the structurally conserved 40-amino acid head-
piece of the HIV accessory protein10. We performed twenty independent simulations and
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Name RMSB Energy Secondary Structure Content
N 0.00 ccHHHHHHHHHclcbHHHHHHHHHHclcccHHHHHHHHHc
D01 2.34 -119.54 cHHHHHHHHHHHlcbcHHHHHHHHHHHHbHHHHHHHHHHc
D02 2.41 -117.52 cHHHHHHHHHHHlcbHHHHHHHHHHHHHbHHHHHHHHHHc
D03 2.76 -116.25 cHHHHHHHHHHHlcbHHHHHHHHHHHHHbHHHHHHHHHHc
D04 2.40 -115.85 cHHHHHHHHHHHlbbHHHHHHHHHHHHHbHHHHHHHHHHc
D05 2.43 -114.67 cHHHHHHHHHHHlcbHHHHHHHHHHHcbHHHHHHHHHHHc
D06 6.48 -114.06 cHHHHHHHHHHHcccbHHHHHHHHHHHHbHHHHHHHHHHc
D07 2.57 -113.65 cHHHHHHHHHHHlbbcHHHHHHHHHHHHbHHHHHHHHHHc
D08 4.61 -107.72 cHHHHHHHHHcclccHHHHHHHHHHHHHlclHHHHHHHHc
D09 4.14 -106.29 cHHHHHHHHHHHcbcbHHHHHHHHHbblcHHHHHHHHHHc
D10 5.92 -103.88 cHHHHHHHHHHHlcHHHHHHHHHbcbcclbHHHHHHHHHc

Table 1. Energies (in kcal/mol) of the 10 lowest energy decoys obtained in the basin hopping simulations of
the HIV accessory protein. The table shows the backbone RMS deviation to the NMR structure and secondary
structure content. The first row designates the secondary structure content of the NMR structure.

found the lowest five to converge to the native structure (seeTable (1))14. The first non-
native decoy appears in position six, with an energy deviation of 5 kcal/mol and a sig-
nificant RMSB deviation. The table demonstrates that all low-energy structures have es-
sentially the same secondary structure, i.e. position and length of the helices are always
correctly predicted, even if the protein did not fold correctly.

The good agreement between the folded and the experimental structure is also evident
from Figure (1)(center), which shows the secondary structure alignment of the native and
the folded conformations. The good physical alignment of the helices illustrates the im-
portance of hydrophobic contacts to correctly fold this protein. An independent measure
to assess the quality of these contacts is to compare the Cβ-Cβ distances (which corre-
spond to the NOE constraints of the NMR experiments that determine tertiary structure)
in the folded structure to those of the native structure. We found that 66 % (80 %) of the
Cβ-Cβ distance distances agree to within one (1.5) standard deviations of the experimental
resolution.

We also performed a simulation of the HIV accessory protein using the adapted paral-
lel tempering method13. We used 20 processors of an INTEL XEON PC cluster and ran
the simulation for a total of30 × 106 energy evaluations for each configuration, which
corresponds to approximately 500 CPU hours on an 2.4 GHz INTEL XEON processor.
All simulations were started with random conformations at high temperatures to allow for
rapid, unbiased relaxation of the structures and the temperature distribution. The final con-
formation with the lowest energy/temperature had converged to within 1.23 / 2.46̊A back-
bone root mean square (RMSB) deviation to the best known decoy / NMR structure of the
HIV accessory protein. The overlay of the experimental and the converged structure (see
Figure (1)) demonstrates the good agreement between the conformations, the difference
in NOE constraints demonstrates that not only short range, but also long range distances
are correctly predicted. Considering the ensemble of final conformations, we find many
structures closely resembling the native conformation. The RMSB deviations of the next
four lowest conformations (all within 1.5 kcal/mol of the minimal energy) have RMSB
deviations of 3.14/2.23/3.78/3.00Å respectively to the native decoy.
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Energy RMSB 3-state secondary structure
0.01 ccHHHHHHHcccccccHHHHHHHHHHcccccccccHHHHHHcHHHHHHHHHHHHHHcccc

-167.87 4.64 cHHHHHHHHHHHcccHHHHHHHHHHHccccccccccHHHHHcHHHHHHHHHHHHHHHHcc

-166.15 8.25 ccHHHHHHHHHHcccHHHHHHHHHHHccccccccccHHHHHcHHHHHHHHHHHHHHHHcc

-165.91 4.41 cHHHHHHHHHHHcccHHHHHHHHHHHccccccccccccHHHcHHHHHHHHHHHHHHHHcc

-164.11 5.54 ccHHHHHHHHHHcccHHHHHHHHHHHccccccccccHHHHHcHHHHHHHHHHHHHHHHcc

-163.99 3.79 cHHHHHHHHHHHcccHHHHHHHHHHHccccccccccHHHHHcHHHHHHHHHHHHHHHHcc

-163.93 4.04 cHHHHHHHHHHHcccHHHHHHHHHHHccccccccccccccccHHHHHHHHHHHHHHHHcc

-163.45 8.52 ccccHHHHHHHHcccHHHHHHHHHHHccccccccccHHHHHcHHHHHHHHHHHHHHHHcc

-163.20 4.37 cHHHHHHHHHHHcccHHHHHHHHHHHccccccccccHHHHHcHHHHHHHHHHHHHHHHcc

-162.67 5.55 cHHHHHHHHHHHcccHHHHHHHHHHHccccccccccHHHHccHHHHHHHHHHHHHHHHcc

-162.52 3.78 cHHHHHHHHHHHcccHHHHHHHHHHHccccccccccccccccHHHHHHHHHHHHHHHccc

Table 2. Energies (in kcal/mol) of the 10 lowest energy decoys of the final population with backbone RMS
deviation to the NMR structure and secondary structure content. The first row designates the secondary structure
content of the NMR structure.. The letters H and c indicate amino acids in Helix and coil strcuture respectively.
Green letters indicate correct, red incorrect secondary strcuture.

2.3 The Bacterial Ribosomal Protein L20

In the course of the simulations on the HIV accessory proteinwe explored methods to
share information between the independent basin hopping simulations in order to improve
the overall convergence. For the 60 amino acid bacterial ribosomal protein L20 (pdb-code
1GYZ) we thus experimented with the evolutionary techniquedescribed in the methods
section. Starting from a seed population of random structures we performed the folding
simulation in three phases: (1) generation of starting structures of the population, (2) evo-
lutionary improvement of the population and (3) refinement of the best resulting structures
to ensure convergence.

The energies and structural details of the best ten resulting conformations are summa-
rized in Table (2). Again the best conformation had approached the native conformation
to about 4.6Å RMSB deviation. In total six of the lowest ten conformations approach the
native structure, while four others misfolded. Note that the selection criterion for the ac-
tive population (see methods section) precludes the occurrence of the same configuration
to within 3Å RMSB, this dominance of near native conformations of the total ensemble is
particularly encouraging.

In order to quantify the overall improvement of native content during the simulation,
we defined the native content of the simulated ensemble as a weighted average of the
deviations of the population and the native conformation: For a population of size N we
add 100(N-R+1)/N for each near-native decoy (RMSB less than4Å) ranked at position R
by energy to the total native score of this population. A score of 100 thus corresponds
to a native decoy placed at the top position, while a near native decoy at the very bottom
contributes just unity. Non-native conformations contribute nothing. Using this measure
the final population contains in excess of 20% of near native conformations, its native score
exceeds 800, increasing sixty-fold during the simulation phases (2) and (3).
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3 Conclusion

Since the native structure dominates the low-energy conformations arising in all of these
simulation, our results demonstrate the feasibility of all-atom protein tertiary structure pre-
diction for three different proteins ranging from 20-60 amino acids in length with a vari-
ety of different optimization methods. The free energy approach thus emerges as viable
trade-off between predictivity and computational feasibility. While sacrificing the folding
dynamics, a reliable prediction of its terminus, the nativeconformation — which is central
to most biological questions — can be achieved.

The computational advantage of the optimization approach stems from the possibility
to visit unphysical intermediate conformations with high energy during the search. This
goal is realized with different mechanism in all of the employed stochastic optimization
methods. In the stochastic tunneling method the nonlinear transformation of the PES per-
mits the dynamical process to traverse abritrarily high energy barriers at low termperatures,
in basin hopping and parallel tempering, simulation phasesat very high temperatures ac-
complish the same objective.
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