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1. MPFER-H: Mutliplane Features Encoder-

Renderer for Human Heads

Challenge organizing team-1. MPFER-H: MPFER for

Heads

Abstract. Our top performing entry uses a Multiplane Fea-

tures Encoder-Renderer model (MPFER) introduced in our

CVPR 2023 paper: Efficient View Synthesis and 3D-based

Multi-Frame Denoising with Multiplane Feature Represen-

tations [24]. MPFER generalizes the concept of multiplane

images [23, 29, 7, 16] to feature space. While multiplane

images encode the scene as a set of fronto-parallel RGB-α
images that are then rendered through alpha-compositing,

MPFER predicts feature maps that are concatenated and

processed together by a learnt renderer. We describe the

method and a number of incremental improvements made

for this challenge below. More details can be found in [24].

1.1. MPFERH: Mutliplane Features Encoder
Renderer for Human Heads

Overview. The general pipeline of our MPFER [24] model

is illustrated in Figure 1. It consists of three main opera-

tions:

• Forward warping. For a given target view, a number

of nearby views of size 3HW are warped into a plane

sweep volume (PSV) using fixed homographies com-

puted directly from the camera parameters of the nearby

and target views. The size of the PSV is DV 3HW
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†These authors are the “To NeRF or not to NeRF: VSCHH 2023” or-
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where the number of depth planes D and the number of

views V are hyper-parameters.

• Encoding. The PSV is then processed by a shared Unet

encoder, producing a set of multiplane features (MPF)

of size DCHW where the number of channels C is

another hyper-parameter. More specifically, the encod-

ing stage consists of D Unet passes with input sizes

(3V )HW (the views are concatenated along the chan-

nel dimension) and output sizes C HW .

• Rendering. Finally, the MPF is processed by a Unet ren-

derer, producing the rendered view of size 3HW . The

input size is (DC)HW (the depths are concatenated

along the channel dimension).

Visualizations of the input PSV averaged over the input

views and predicted MPF are shown in Figure 2.

Novelty. We made two main modifications to the original

pipeline for this challenge.

• No backward warping. In [24], a single MPF centered

on a reference view can be used to render multiple target

views by backward warping the MPF before rendering

it. Here, we drop the backward warping operation and

compute the MPF directly centered on the target view.

This modification simplifies the pipeline during training

and allows to train larger models. However, one MPF

must now be computed for each target view.

• Group processing of the depth planes. In [24], each depth

plane of the PSV is processed by an Encoder Unet pass

independently. Here, we propose to process the depth

planes in groups, allowing the use of significantly more

depth planes for a similar computational budget. More

precisely for a group size G, we view the PSV tensor as a

tensor of size (D//G) (G×3V )HW and process it with
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Figure 1: Illustration of our method. Learnable modules are highlighted in red and are implemented with convolutional

UNets.

PSV MPF

Figure 2: Visualizations of input plane sweep volumes (PSV) averaged over the input views and predicted multiplane features

(MPF).

(D//G) Unet passes.

Additional improvements. 4 more elements contributed to

the score of our final submission.

• Bigger model. The reduced GPU memory usage during

training resulting from the previous two modifications al-

lowed us to train MPFER with larger Encoder and Ren-

derer Unets, using 128 filters in their base convolutions,

instead of 64 for the baseline.

• Data augmentation. To deal with the limited size of

the training set, we introduced two simple and effective

forms of data augmentation: random shuffling of the in-

put views, and limited jittering of the depth planes. We

also tried scaling up and down the input PSV by a small

factor, or flipping it left-right, but these two strategies did

not provide any additional benefits.

• Positional encoding. We help the Encoder and Decoder

Unets know the region of the image they are currently

processing by feeding them the height and width position

of each pixel encoded as a pair of floats scaled in the [0,1]

range concatenated to their inputs.

• Finetuning. For view synthesis, training MPFER with an

L1 loss only produces poor results. The baseline model

addresses this issue by using a mixture of VGG loss and

L1 loss, but this strategy still tends to produce visible

gridding artifacts in the output images. For our final sub-

mission, we first trained the model using the mixture of

VGG and L1 loss, before finetuning it using an L1 loss

only at a low learning rate.

1.2. Experimental Results

Environment. In all our experiments, we train one MPFER

model for all the individuals in the ILSH dataset. We train

using the Adam optimizer for 100k steps, with a learning

rate of 1.5e-4 reduced to 1.5e-5 after 80k steps. The fine-

tuned models are trained for another 4k steps with a learn-

ing rate of 1.5e-5, reduced to 1.5e-6 after 2k steps. We use
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Figure 3: Qualitative results for a target view not seen during training.

4 nvidia V100 GPUs per training with a batch size of 4 (i.e.

one instance per GPU). We found experimentally that train-

ing on large image regions is crucial for good performance;

but it is also difficult as it tends to quickly saturate GPU

memory during training. One simple solution is to train on

downsampled images and we obtained our best results with

images downsampled 8x (i.e. image size: 375× 512), with

training patches of size 364 × 364. The predicted images

have the same resolution as the input images and are simply

upsampled bilinearly to produce the final images. In most

of our experiments, we used V = 16 nearby views in in-

put as fewer views seemed to produce slightly less reliable

3D geometries. For the depth range, we visually inspected

some PSVs and chose values that seemed compatible with

all the scenes (see for instance the PSV in Figure 2). More

precisely, we fixed the near depth at 1.02m and the far depth

at 1.3m for all the individuals and all the views, both during

training and inference, with a random jitter of 0.02m during

training when using augmentation. We then uniformly sam-

pled depths between these two values for a number of depth

planes D varying between 32 and 256.

Quantitative Results. We present an ablation study with

7 different training setups in Table 1. “ILSH8” means that

the input images are downsampled 8x. “Unet64” or “128”

means that the Unets have a base number of filters of 64 or

128. “16V” means 16 input views. “1x32D” means 32D

depth planes processed in groups of 1 (baseline). “8x32D”

means 256 depth planes processed in groups of 8. “a”

means data augmentation. “p” means positional encoding.

“f” means finetuning. We see that all the elements discussed

before contribute to the performance of the final submis-

sion, with an improvement over the baseline for the masked

PSNR of 1.85dB. The reported time includes the forward

warping of nearby views, the encoding of the MPF and the

rendering of the final target view at the chosen resolution

(375× 512) on an Nvidia V100 GPU.

Evaluation Region Full Region Masked Region Time

Metric PSNR SSIM PSNR SSIM Sec.

ILSH8-Unet64-16V-1x32D 25.54 0.80 27.05 0.82 0.36

ILSH8-Unet64-16V-8x32D 26.05 0.81 27.64 0.82 0.75

ILSH8-Unet64-16V-8x32D-a 27.07 0.83 28.06 0.83 0.75

ILSH8-Unet128-16V-8x32D 25.47 0.80 27.32 0.82 1.5

ILSH8-Unet128-16V-8x32D-a 27.30 0.83 28.18 0.83 1.5

ILSH8-Unet128-16V-8x32D-a-p 27.61 0.83 28.54 0.83 1.5

ILSH8-Unet128-16V-8x32D-a-p-f 28.05 0.84 28.90 0.83 1.5

Table 1: Ablation study for our MPFER method on the

ILSH dataset. Our final submission is highlighted in bold.

Qualitative Results. We compare the outputs of various

models on a target view not seen during training in Fig-



ure 3. Our final submission is better than the baseline at

reconstructing 3D geometries (see the eye region) and tex-

tures (see the beard region); and it does not suffer from

gridding artifacts. Remarkably, both the baseline and our

final submission can generalize the positions of the back-

ground lights across subjects. This is also apparent in the

high PSNR and SSIM scores on the full regions compared

to other approaches. We believe that this ability comes in

part from the use of a learnt renderer.

1.3. Discussion

Further improvements. We were able to outperform our

final submission by ≈0.2dB on the masked region simply

by varying the hyperparameters (see Table 2).

Higher resolution. We also explored training on higher

resolution images, by using ILSH images downsampled 4x.

As discussed before, it is challenging to train on large im-

age regions at this resolution and our final model performs

slightly worse on the test set (see Table 2). Although the

outputs look visually sharper (see Figure 3), this model is

less accurate overall on the 3D geometries.

Evaluation Region Full Region Masked Region Time

Metric PSNR SSIM PSNR SSIM Sec.

ILSH8-Unet64-16V-1x64D 26.28 0.81 27.82 0.82 0.75

ILSH8-Unet96-16V-4x64D-a-p-f 28.32 0.84 29.09 0.84 1.7

ILSH4-Unet64-10V-4x32D-a-p 26.41 0.82 28.03 0.83 2.5

ILSH4-Unet64-10V-4x32D-a-p-f 26.70 0.83 28.61 0.84 2.5

Table 2: Additional results for our MPFER method on the

ILSH dataset. A new best result is highlighted in bold.

Limitations. While our method performs remarkably well,

one current limitation is the difficulty to train on large image

regions at high resolution. It might be possible to address

this limitation by optimizing memory usage further during

training; or by using devices with larger memories; or by

using gradient checkpointing. Another related limitation is

that multiplane features representations (MPFs) are highly

sparse, and a lot of the computation seems to be wasted

away. In the MPF of Figure 2 for instance, the first and last

8 planes do not seem to contain much meaningful informa-

tion at all, and the remaining 16 planes contain little infor-

mation per plane. One direction we plan to explore in the

future is to adapt the use of the computational resources to

each scene in a more efficient way, for instance by adjusting

the depth range on a per-view basis, or by computing high

resolution features only in regions of interest.

2. DINER-SR: Depth-aware Image-based

NEural Radiance fields with Super Resolu-

tion

Challenge organizing team-2. DINER-SR

Abstract. We present our submission to the ICCV 2023

Challenge “To NeRF or not to NeRF: A View Synthesis

Challenge for Human Heads”. We train a single gen-

eralizable DINER model using all subjects and training

views in the ILSH dataset. We initialize the model with

pre-trained FaceScape weights, enabling faster convergence

and sharper results compared to training on ILSH data

from scratch. We employ a super-resolution module to

upscale the rendered images to full resolution with a 2D

UNet model, trained with L1 and perceptual losses, further

improving results. Our method improves upon our baseline

by almost 6dB in the masked region and scored second on

the leaderboard during the challenge phase.

Baselines: For the baseline method, we use the

model DINER: Depth-aware Image-based NEural Radiance

fields [21]. We employ their pre-trained model, trained on

the FaceScape dataset [30].

As a pre-processing step, DINER requires initial depth

maps for each training view, predicted using state-of-the-

art depth estimation network TransMVSNet [5]. To achieve

good-quality depth maps, we pre-process the data by resiz-

ing all images to be 256px width and predict foreground al-

pha masks for each image using three methods: matting es-

timation [15], face-parsing [28], and SMPL-fitting [1]. The

final foreground mask is obtained by taking the union of the

three predicted masks, as shown in Fig. 5. We use multi-

ple methods because face-parsing fails for back-of-the-head

views, while matting produces masks with holes and trans-

parent regions. We compute the nearest four views for each

training view based on the camera view directions and use

these as input to the depth estimation network. Based on the

SMPL fittings, we set near-far bounds to be [0.9, 1.4].

With depth maps estimated for each training view, we

predict novel views for each test subject using the DINER

model with pre-trained weights and the nearest four views

as input, downsampled 4× to 768× 1024px resolution. Fi-

nally, we upsample the resulting image renders to the full

resolution of 3000× 4096px using bilinear interpolation.

2.1. DINERSR: Depthaware Imagebased NEural
Radiance fields with Super Resolution

To improve over the baseline method, we train a sin-

gle DINER model for an additional 60,000 steps using all

subjects and training views in the ILSH dataset. Training

for longer could improve the results, as could fine-tuning

the model for each subject individually, but we were lim-

ited by the challenge timeframe. We found that initial-

izing the network weights with the pre-trained FaceScape

model weights enabled faster convergence and sharper re-

sults than training the model on the ILSH dataset from

scratch. However, the DINER pre-trained model was

trained on FaceScape data with white backgrounds, while



the ILSH dataset contains black backgrounds. Therefore,

we adjust the model to render black backgrounds, set the

initial estimate of background depth to be 1.4 with high con-

fidence (zero standard deviation) and fine-tune the model

sufficiently long to re-learn to render the backgrounds cor-

rectly black instead of white.

To improve results further, we employ a super-resolution

module to upscale the predicted images to the full resolu-

tion of 3000 × 4096px. To do this, we upscale the image

renders using bilinear interpolation and process them with

a 2D UNet. We train a single UNet model for all subjects

using all GT-render pairs in the training set, with a combi-

nation of L1 and perceptual (VGG) losses. We find that the

UNet model helps reduce artifacts and corrects colour shifts

in the NeRF renders. An overview of our method is shown

in Fig. 4.

Figure 4: Our method overview. Four nearest source views

to the target view are selected as input to the DINER model,

along with corresponding predicted alpha masks and initial

depth maps. The output renders of the DINER model are

upscaled to full resolution using a 2D UNet super-resolution

module which reduces rendering artifacts and colour shifts.

2.2. Experimental Results

Experimental environment: First, we train the DINER

model on a single NVIDA V100 32Gb GPU for 60,000

steps, taking approximately two days. We train with Adam

optimizer [11], batch size 1 and a learning rate of 1e-4.

Rendering time for a single image is roughly 86 seconds.

Secondly, we render all training images and train the super-

resolution module separately for 150,000 steps, with batch

size 16, patch size 512× 512px, taking about 12 hours. In-

ference for the super-resolution module takes 0.88 seconds.

Quantitative Results: The performance metrics for our

method obtained for the challenge dataset are given in Ta-

ble. 3. Our method improves over the baseline result in all

metrics, with almost 6dB increase in PSNR for the masked

region and 0.05 increase in SSIM. Ablation study results,

given in Table 4, show that the super-resolution module pro-

vides an almost 1dB increase in masked PSNR.

Qualitative Results: Fig. 6 shows visualizations of our

model output vs the baseline result. Close-ups show that our

Evaluation Region Full Region Masked Region
Time (Sec.)

Metric PSNR SSIM PSNR SSIM

Base Method [21] 14.81 0.58 22.72 0.78 86.37

Our Method 22.37 0.72 28.50 0.83 87.25

Table 3: Results of baseline and our method on the ILSH

dataset.

Methods Masked-PSNR

DINER [21] w/o masks 27.09

DINER w/ masks 27.61

Final Method (DINER w/ masks + SR) 28.50

Table 4: Ablation study compares using DINER w/ and w/o

masks, and final our method using super-resolution (SR)

module.

method displays better detail reconstruction and fewer arti-

facts than the baseline method. We also notice less colour

shift in the results.

Figure 5: Mask generation, left to right: i) input image, ii)

alpha mask [15], iii) face-parsing [28], iv) SMPL fit [1], v)

union of masks.

2.3. Discussion

Limitation. Our method is limited by multiple processing

steps, including foreground mask prediction, image resiz-

ing, depth estimation, DINER training and rendering, and

finally super-resolution. Ideally, the model would be trained

end-to-end; however, we are restricted by memory size and

network capacity. Inference time is also relatively slow.

Working with downsampled images may result in blurry

outputs compared to using full resolution directly. We also

only train on the masked regions, therefore we cannot re-

construct the backgrounds and the performance metrics on

the full image are low compared to other methods.

Further Improvement. We could improve results be-

yond what was achieved during the challenge timeframe by



Figure 6: Qualitative results of our final method vs the base-

line.

Figure 7: Test performance (Masked PSNR) vs training it-

erations.

training the DINER model for longer, as this leads to bet-

ter reconstructions and higher PSNR values, as shown in

Fig. 7. Additionally, training the super-resolution module

for longer or using a different architecture such as an image

transformer would likely improve results.

3. TIFace: Improving Tensorial Radiance

Field and Implicit Surfaces for Face Recon-

struction

Team-1. OpenSpaceAI

Abstract. This section outlines the methodology and

approach used to tackle the challenge. First, the baseline

model is introduced to fit the ILSH dataset. Then, we

improve face reconstruction quality through tensorial

radiance fields (T-Face) and implicit surfaces (I-Face)

respectively. Finally, the experimental results demonstrate

the effectiveness of the proposed method and superior

performance on face reconstruction.

3.1. Methodology

Baseline: To address the View Synthesis Challenge for

Human Heads (VSCHH), we use TensoRF [4] as the base-

line. TensoRF utilize 4D tensors to model the radiance field

of a scene. The key idea mainly focus on the low-rank fac-

torization of 4D tensors to achieve better rendering quality

and smaller model size with fast speed. Following the base-

line model, we implement a vector-matrix decomposition

version of TensoRF with some modifications to fit the ILSH

dataset. As shown in Fig. 9, although the baseline model

achieves relatively accurate facial reconstruction, the recon-

structed results often have floating artifacts, which severely

affects the reconstruction quality of the edges of the face.

We speculate that this is because there are light sources in

the background area of the rendered image, which causes

a sudden change in the background color. To avoid this,

we use an efficient way to get the masks corresponding to

the input images. Furthermore, we improve both explicit

and implicit rendering methods and build extra constraints

based on the masks to improve rendering quality.

T-Face: Recently, SAM-based image segmentation meth-

ods have attracted a lot of attention [12]. Following ViT-

Matte [27], we obtain the corresponding masks of input im-

ages through a small number of label points as prompts. As

shown in Fig. 8, we get the masks fine enough to distinguish

the foregrounds and the backgrounds of the images, even in

the region of hair strands.

SAM
Refined by

ViTMatte

Image

Prompt

SAM mask Trimap Final mask

Erosion

Dilation

Figure 8: The pipeline of mask generation. To reduce the

computational overhead, we first downsample the image

and then upsample the predicted mask. Then we label the

image with prompt points and use SAM to obtain a initial

mask. After erosion and dilation on the image, we generate

a trimap mask, where the gray areas represent the areas that

need further segmentation. With the help of VitMatte, we

obtain a final refined mask.

A natural way to utilize masks is to combine masks with

RGB images into RGBA images, as implemented on the

Blender dataset. This actually use masks to set the values

of background area in the image to a fixed color (e.g. black).

Although it appears to remove the effect of cluttered back-

grounds on rendering faces, this method still exhibits some

artifacts in our experiments, as shown in Fig. 10 and Fig. 11.

We speculate that the reason is that the generated mask is

not completely accurate, and the model lacks constraints on

the background, resulting in not so fine sampling on the sur-

face.

To address this issue, we propose a constraint on the



mask and demonstrate its effectiveness through experi-

ments. For each pixel, we march along a ray, sampling Q
shading points along the ray and computing the accumu-

lated density weights:

T =

Q∑

q=1

τq(1− exp(−σq∆q)), τq = exp(−

q−1∑

p=1

σq∆q).

(1)

Here, σq is the density at sampled location xq , ∆q is the ray

step size and τq denotes ray transmittance. The mask loss

is:

Lmask =
λ

|B|

∑

x

T 2

x I(x ∈ B), (2)

where x is the pixel corresponding to the ray, B is the back-

ground areas according to the masks, I(·) is the indicator

function. Here, we set λ = 0.01 in our experiments. Note

that we also tried to use cross entropy in mask loss func-

tion, and experiments showed that it is not as effective as

the proposed loss.

I-Face: To further improve the face rendering quality, we

explore another way to render photo-realistic faces. We

observe that although T-Face shows promising results, it

does not perform well in facial reconstruction details. In-

spired by InstantNGP [18] and NeuS [25], we use implicit

surface rendering for face reconstruction based on Instant-

NeuS implementation [9]. Before this, we also tried Instant-

NeRF [9] (combination of InstantNGP [18] and NeRF [17])

to complete face reconstruction, but gave up due to the dif-

ficulty of imposing constraints on neural radiance fields to

remove artifacts. In the experiment, we use the binary cross

entropy loss as the mask loss, as mentioned in NeuS [25].

To avoid the floating artifacts, we also add the sparsity loss:

Lsparsity =
1

|S|

∑

y∈S

exp(−γd(y)), (3)

where y is the sampled point, d(y) is the corresponding SDF

values, S represents the collection of sampling points. Here

we set γ = 0.5. Finally, the total loss is defined as:

Ltotal = Lcolor + αLreg + βLmask + γLsparsity, (4)

where Lcolor is a MSE loss on RGB color and Lreg is the

Eikonal regularization [8].

TI-Face: To further improve the results, we use a sim-

ple and effective linear weighted ensemble method to obtain

the final results. In practice, we use a set of linear weights

(0.1, 0.6, 0.3) corresponding to baseline, T-Face, I-Face to

ensemble the results.

3.2. Experimental Results

This section gives implementation details and presents

the results achieved during the challenge phase. We first

compare our approach with baseline method and then anal-

yse the effectiveness of the proposed improvements.

Implementation Details. We implement our T-Face and I-

Face on PyTorch. In T-Face, we follow the baseline configu-

rations, training our model for 50000 steps with a batch size

of 4096 rays on a single NVIDIA RTX 3090 (40-60 minutes

per scene). In I-Face, we train our model for 20000 steps

with a dynamic batch size (256-8192) on a single NVIDIA

RTX 3090 (10-20 minutes per scene).

Figure 9: The rendering results of baseline model. Left:

rendered image. Right: depth image.

Figure 10: The rendering results of baseline model based

on masks. Left: rendered image. Right: depth image.

Figure 11: The failure cases of baseline model based on

masks.

Comparison with the baseline. We evaluate our TI-Face

on the ILSH dataset. As shown in Table. 5, the results ob-

tained by fusing baseline, T-Face and I-Face perform bet-

ter than those rendered by either method alone. We also

selected several examples to qualitatively compare these

methods, as shown in Fig. 12 and Fig. 13. Interestingly, al-

though I-Face appears to render clearer images, it does not

perform as well as T-Face in actual evaluations. We spec-

ulate that the reason is that the results generated by I-Face



Evaluation Region Full Region Masked Region
Time (Sec.)

Metric PSNR SSIM PSNR SSIM

TensoRF [4] 20.28 0.70 24.70 0.81 31.13

T-Face(Ours) 21.42 0.67 26.63 0.82 30.88

I-Face(Ours) 20.99 0.66 25.84 0.81 45.73

TI-Face(Ours) 21.66 0.68 27.02 0.83 76.88

Table 5: Results of baselines and our methods on the ILSH

dataset in the challenge phase. TI-Face refers to the final

fused results.

Evaluation Region Masked Region

Metric PSNR SSIM

baseline 24.03 0.83

baseline+SAM-mask 25.24 0.83

baseline+mask 25.39 0.84

baseline+mask+Lmask(cross entropy) 25.52 0.84

T-Face(baseline+mask+Lmask(L2)) 26.77 0.84

Table 6: Abaltion study of T-Face on a subset (the first

three) of ILSH dataset in the developing phase.

have an overall deviation from the ground truth, as shown in

the Fig. 14, the rendering results of I-Face have unexpected

color differences and geometric inconsistency. We have not

yet identified the cause of this issue, and it is possible that

we will make further improvements in the future.

Figure 12: Examples of qualitative results from baseline

and T-Face. Left: baseline. Right: T-Face.

Ablation Study. To demonstrate the effectiveness of the

proposed improvement, we ablate our methods on the first

three scenes of ILSH dataset. As shown in Table. 6, the

ablation experiment demonstrated the effectiveness of the

proposed mask loss function. Please note that in our exper-

iment where we only add a mask, we set the background

Figure 13: Examples of qualitative results from Instant-

NeRF and I-Face. Left: Instant-NeRF. Right: I-Face.

Figure 14: Examples of qualitative results from I-Face.

From left to right: GT image (adjacent frames), rendered

image, the predicted depth image, the predicted geometry

normal.

area to black in order to eliminate artifacts, but the ex-

periment shows that without appropriate constraints on the

mask, floating artifacts still exists. The use of qualitative

results to demonstrate the ablation experiment of T-Face is

clearly more intuitive. As shown in Fig. 15, the proposed

sparsity loss function Lsparsity significantly improves the

quality of implicit surface reconstruction. Nevertheless, the

reconstruction quality of I-Face is still inferior to T-Face.

Therefore, improving the rendering quality of implicit sur-

faces remains a huge challenge.

4. Recovering Better Texture on Faces by bet-

ter sampling strategy.

Team-2. NoNeRF



Figure 15: Ablation study of I-Face. From left to right:

GT image (adjacent frames), rendered image, the predicted

depth image, the predicted geometry normal. From top to

bottom: Instant-NeuS, Instant-NeuS+mask, I-Face(Instant-

Neus+mask+Lsparsity).

Abstract. Neural Radiance Fields (NeRFs) are a powerful

representation for modeling a 3D scene as a continuous

function. Though NeRF is able to render complex 3D

scenes with view-dependent effects, few efforts have been

devoted to exploring its limits in a high-resolution setting.

Specifically, existing NeRF-based methods face several

limitations when reconstructing high-resolution real scenes,

including a very large number of parameters, misaligned

input data, and overly smooth details. Especially for

360-degree facial scenes, it is difficult to render due to the

asymmetry and textile features. In this work, we conduct

our analysis on the VSCHH challenge dataset. Through

observation, we notice that conventional methods such as

TensoRF fail to render high-quality facial scenes due to the

light source in the background. Furthermore, to increase

the inference speed and reduce the training time, a strategy

of skipping rays is used, thus reducing the quality of the

outcomes. To overcome those drawbacks, we conducted

a simple method to enhance the output quality dubbed as

NoNeRF (No skipping rays NeRF).

4.1. Methodology

This section presents an overview of our method for TO

NERF OR NOT TO NERF: VSCHH at ICCV 2023 †. Based

on the detailed analysis of the dataset, a better ray march-

ing sampling strategy produces better texture outputs than

the conventional method. Additional studies further demon-

strate the effectiveness of the proposed pipeline, and we will

show more details of our experiment.

Baselines: In this work, we utilize TensoRF [4]) and the

NerfAcc [13] module. We implement the feature decod-

ing function S as either an MLP or SH function and use

P = 27 features for both. For SH, this corresponds to

3rd-order SH coefficients with RGB channels. For neural

features, we use a small MLP with two FC layers (with

128-channel hidden layers) and ReLU activation. We use

the Adam [11] optimizer with initial learning rates of 0.02
for tensor factors and (when using neural features) 0.001 for

the MLP decoder. We optimize our model for T steps with a

batch size of 4096 pixel rays on a single NVIDIA RTX 3090

GPU (24GB). We apply a feature grid with a total number of

N3

0
voxels; the actual resolution of each dimension is com-

puted based on the shape of the bounding box. To achieve

coarse-to-fine reconstruction, we start from an initial low-

resolution grid with N3

0
voxels with N0 = 128; we then

upsample the vectors and matrices linearly and bilinearly at

steps 2000, 3000, 4000, 5500, 7000 with the numbers of

voxels interpolated between N3

0
and N3 linearly in loga-

rithmic space. The maximum voxel resolution is set to 300.

The models are trained for 50000 iterations with 96 compo-

nents.

Recovering Better Texture on Faces by better sampling

strategy: For better quality results, we adopted NerfAcc

module. Specifically, we include the Occupancy Grid Esti-

mator for a faster and better sampling strategy. We set the

resolution for the estimator to 256. Since we aim for better

results, we do not need the compression effects from Ten-

soRF, therefore, we set the thresholds to 0. In addition, we

only estimate the PSNR loss for the valid masked RGBs.

For better quality, the maximum voxel resolution is set to

1024. The models are trained for 50000 iterations with 192
components. We increase the number of upsamples at steps

2000, 3000, 4000, 5500, 7000, 8500, 10000, 12000, 14000,

16000, 18000, 20000, 22000, 24000, 26000, 28000, 30000.

4.2. Experimental Results

Experimental environment: We evaluated both the base-

line and our method on a single NVIDIA RTX 3090 GPU.

A Pytorch library version 1.13.1 is used, with CUDA ver-

sion 12.2.

This section includes a detailed explanation of the qual-

itative and quantitative results between the baseline model

†https://sites.google.com/view/vschh/home



Evaluation Region Full Region Masked Region
Time (Sec.)

Metric PSNR SSIM PSNR SSIM

BaseMethod [4] 20.13 0.70 24.37 0.81 72.55

NoNeRF 20.37 0.69 26.43 0.82 175.58

Table 7: Results of baselines and NoNeRF on the ILSH

dataset.

Methods Masked-PSNR

Baseline 24.37

Increase the # of components 25.11

Increase the voxel resolution 26.17

Use NerfAcc sampling strategy 26.43

Final Method (Ensemble) 26.43

Table 8: The results from each individual improvement and

the final result which ensembles all of them.

and our method:

Quantitative Results: For the quantitative results, we re-

ported two metrics: PSNR and SSIM for both the full region

and masked region. As we can see, our proposed method

has a slight improvement over the baseline method on the

full region performance. This could be due to our train-

ing strategy that only optimizes the RGBs for valid masked

RGBs. However, for the masked region performance, our

method provides a higher SSIM and higher PSNR. NoNeRF

achieves a 2.06 (dB) improvement on PSNR over the base-

line. Which shows the effect of a better sampling strategy

on the output quality. It should be noted that since we in-

crease the voxel resolution, adopted more components, and

do not skip any rays, therefore the runtime is much higher

than the baseline.

Qualitative Results: We visualized the model output, as

shown in Fig. 16. Compared with the baseline model Ten-

soRF alone, the outputs are blurry and have mixed RGBs

between different regions, resulting in low-quality outputs

despite the similar full region performance. Especially, for

the conventional method and sample strategy, most RGBs

are skipped to increase the speed and save resources. How-

ever, this causes a reduction in the quality of the outputs, as

we could see in Fig. 16 with many black RGBs on the face

region.

4.3. Ablation study

In Fig. 17, 18, 19, we visualize more examples from the

challenge phase.

5. Sphere-Guided Neural Implicit Face Recon-

struction

Team-3. CogCoVi

Figure 16: Some examples visualizations from challenge

phase outputs between the baseline TensoRF (left) and the

NoNeRF (right).

Figure 17: Some examples visualizations from challenge

phase outputs between the baseline TensoRF (left) and the

NoNeRF (right).

Abstract. Most lines of work in recent years employ meth-

ods based on Neural Radiance Fields [17] for the task of

Novel View Synthesis. These methods show impressive ca-

pabilities of viewpoint generalization within the input cam-

eras’ positions manifold. However, in sparse camera setups,

their performance decreases considerably. To this end, sev-

eral methods [10, 20] introduced additional regularization

terms to prevent overfitting to the input. We follow a simi-

lar idea and build our solution around the NeuS model [25],

which minimizes an Eikonal penalty [8] in addition to the

rendering loss. A side benefit of this regularization is the

reduction of floating artifacts, making the model more suit-

able for the sparse camera setup. Still, the NeuS model

samples the points for volume rendering along the entire

camera ray, which has a slow convergence and is prone to



Figure 18: Some examples visualizations from challenge

phase outputs between the baseline TensoRF (left) and the

NoNeRF (right).

Figure 19: Some examples visualizations from challenge

phase outputs between the baseline TensoRF (left) and the

NoNeRF (right).

degenerate solutions. Therefore, our solution is based on

sphere-guided trained NeuS [6] that uses optimizable prim-

itives to bound the sampling space. Moreover, we propose

an improved primitive initialization scheme for the task of

face reconstruction.

5.1. Methodology

Baseline: NeuS [25] is one of the first methods that intro-

duce additional surface constraints to NeRF [17] by repre-

senting the learned geometry as a signed distance function.

Although NeuS underperforms compared to NeRF for the

task of NVS under a dense-camera setup, we choose to ex-

ploit this model because of the Eikonal penalty. This regu-

larization encourages the gradients of the geometry network

to be of unit 2-norm and acts as a smoothness prior, pre-

venting the appearance of noisy surfaces in the space. We

produce our baseline results using the NeuS model† trained

without segmentation masks or a background network and

adjust the following hyperparameters: batch size = 1024,

igr weight = 0.05, sdf network.multires = 8. We stop

the training after 100k iterations to prevent overfitting the

training views.

Sphere-Guided NeuS: One of the main issues in sparse

camera setups is the hallucination of floating artifacts that

satisfy the input views but do not generalize to new view-

points. The problem is amplified in larger scene spaces, as

they are more challenging to reconstruct accurately. For that

reason, we follow the method introduced in [6] to gradually

prune the empty space of the scene and guide the sampling

to the area of interest using spherical primitives.

As this approach builds around NeuS, we follow the

same training setting as for the baseline. Differently from

the original implementation of sphere-guided training,†

which randomly samples the origins of the spheres through-

out the scene volume, we propose to improve the initializa-

tion of the primitives using a fitted FLAME mesh for each

subject [14]. This enables us to reduce the starting radius

of the primitives, further concentrating the training sam-

ples around the target surface. We fit the FLAME model

minimizing the landmark distance between the model and

unprojected 2D facial landmarks detected in the frontal in-

put images. To reflect the enhanced initialization, we ad-

just the following hyperparameters for spheres’ optimiza-

tion: n spheres = 12000, radius scheduler.max =
0.15, i warmup spheres = 10000. Fig. 20 provides an

overview of the proposed method.

5.2. Experimental Results

We report the numerical results for the baseline and our

final model in Table 9. Additionally, we ablate the proposed

FLAME-based initialization and evaluate the model with

randomly-initialized primitives. By using sphere-guided

training, we observe a significant improvement of 7.07 %

in the PSNR evaluated inside the face region. Our enhanced

initialization further boosts the performance. In Fig. 21, it

can be observed how the sphere guidance amends the arti-

facts around the boundaries of the face, and that superior

results are obtained with our final model. The metrics on

‘Full Region’ are poor for all three models, as we do not

explicitly address the background region. The visual results

highlighted in Fig. 22 confirm that our approach does not

overfit the training views but succeeds in reconstructing the

subject, as novel views do not display severe artifacts.

All the considered models are trained from scratch for

every scene for 100k iterations. The fitting time per scene is

around 5h45min for the baseline and 6h30min for the final

†github.com/Totoro97/NeuS
†github.com/AndreeaDogaru/SphereGuided

github.com/Totoro97/NeuS
github.com/AndreeaDogaru/SphereGuided


Figure 20: Method overview. Firstly, we detect 2D facial

landmarks in the input frontal views and use them to fit the

FLAME model. Next, we sample the primitives’ origins

from the model’s surface. The initialized sphere-based sur-

face is then optimized jointly with the NeuS model. Finally,

we volume render novel views of the trained neural implicit

surface.

Evaluation Region Full Region Masked Region

Metric PSNR SSIM PSNR SSIM

NeuS [25] 21.02 0.72 24.33 0.80

Sphere-Guided NeuS

[6] w/ rand. init.
21.46 0.70 26.05 0.82

Sphere-Guided NeuS

w/ FLAME init.
21.49 0.70 26.33 0.82

Table 9: Quantitative comparison on the ILSH dataset.

model. Table 10 reports the averaged rendering times. We

consider the default setting with 128 points sampled per ray

and a faster alternative with 64, which does not affect the

rendering quality of the sphere-guided models.

5.3. Discussion

Though the proposed approach obtains good results in

the face region, there are still challenges to be considered.

The lack of background modeling induces artifacts that can-

not be fully handled through sphere-guided training. Be-

cause of the sparse view setting, using a dedicated back-

ground network as proposed in [25] does not solve the issue,

and other artifacts appear, as illustrated in Fig. 23.

Additional limitations to be addressed in future works

include poor reconstruction of the shoulders and hair areas.

Methods
Points Masked Time

per ray PSNR (sec.)

Baseline 128 24.33 944

Ablation 128 26.05 862

Ours 128 26.33 806

Baseline 64 24.14 510

Ablation 64 26.04 470

Ours 64 26.32 456

Table 10: Rendering time per frame averaged across scenes.

Baseline Ablation Ours

Figure 21: Illustrative qualitative results on the ILSH

dataset.

view 1 view 2 view 1 view 2
Baseline Ours

Figure 22: Multi-view rendering comparison. In the first

row, it is noticeable that NeuS yields a decent rendering for

‘view 1’ but fails for ‘view 2’, displaying unrealistic arti-

facts. On the other hand, the renderings resulting from our

method are consistent and more faithful to the input images.
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6. Artifact Avoidance by Reducing Problem

Complexity

Team-4. CUBE

Novel view synthesis is a complex problem that has been

the subject of much research. Many approaches that

seek to solve such a problem assume a large supply of



NeuS NeuS w/ NeRF++ Ours

Figure 23: Background modeling is challenging in sparse

setups.

standard-resolution data capturing a wide range of viewing

angles. The ILSH dataset, and accompanying challenge,

increase the problem’s complexity with only 22 training

images per subject at a high-resolution of 3096×000.

With these deviations from the typical data structure, to

the best of our knowledge, all preexisting methods are

either unable to effectively capture the scenes geometry,

have substantially reduced visual clarity, or suffer from

significant rendering artifacts. In the few methods capable

of capturing the scene’s geometry, we found that many

visual artifacts are a result of improper parameter settings

and background interference. As a result, we propose a

method to avoid such problems through a more intelligent

selection of parameters and the complete removal of the

oftentimes complex background structures.

6.1. Methodology

Baseline: Mip-NeRF 360 [2] acted as our baseline method

for this challenge. To reproduce our baseline, we use the

standard blender parameters from [2] with 512 hidden units,

and change the near/far values to effectively capture the

scene’s geometry. According to the challenge forum, we

change the near and far values to 0.4 and 2.8 respectively.

We also use the provided masks from the ILSH dataset to

remove the camera calibration borders around the images.

Artifact Avoidance by Reducing Problem Complexity:

Our method directly extends the baseline to better perform

on the challenge of novel view synthesis for human heads

using a set of sparse, high-resolution images. In specific, we

achieve better reconstruction over the baseline by confining

the problem to maximize important metrics (the head) and

by fine-tuning certain parameters to promote better geome-

try and visual clarity.

During the development of our method, we noticed that

many reconstruction artifacts are caused by not the subject’s

face, but by the background. Given the sparse set of images,

the model is simply unable to effectively capture everything

(face + background). Due to this, we confine the problem

Figure 24: An overview of our method.

with SAM [12], by applying a dilated binary mask to set

all background pixels in our training data to black. Dilation

of the mask is necessary to ensure there are no masking er-

rors (e.g. missing parts of the face). Removing background

structure and lighting significantly minimizes, or in most

cases, removes, artifacts caused by the background while

maximizing the performance of head reconstruction. For a

more visual understanding of SAM’s benefits and the need

for dilation, refer to Fig. 25

Figure 25: Effects of masking the background with (Ours-

1) and without dilation (Ours-2) compared to the baseline.

We see significant improvement from the baseline to Ours-1

with the removal of the lighting artifact on the shoulder and

better color/texture for the face. Ours-2 further improves

over Ours-1 by removing the black line on the neck caused

by masking errors.

In addition to confining the problem, our method also

uses more intelligently selected parameters to further de-

crease the reconstruction artifacts found in the baseline. The

primary parameter we found to make the most impact on



Evaluation Region Full Region Masked Region
Time (Sec.)

Metric PSNR SSIM PSNR SSIM

Mip-NeRF 360 [2] 20.59 0.71 24.13 0.80 78.00

Ours 21.07 0.66 25.72 0.81 95.00

Table 11: Quantitative comparison between Mip-NeRF 360

and our method on the ILSH dataset.

our results was the number of samples taken from each ray.

There was inconsistency across subjects. At times, 32 sam-

ples resulted in empty, discolored, or incorrectly textured

spots on the face, whereas 64 samples seemed to resolve it

as shown in Fig. 26. Conversely, in other cases, the opposite

was true and 32 samples were ideal. The full overview of

our method can be seen in Fig. 24.

Figure 26: The number of points sampled along each ray is

critical to accurate renderings. Ours with 32 samples (Ours-

1) struggles with representing the texture and color on the

subject’s forehead and cheeks, where 64 samples (Ours-2)

resolves this problem.

6.2. Experimental Results

This section presents the results achieved during the

challenge phase. All experiments were performed on sin-

gle A100 and H100 GPUs.

Quantitative Results: Quantitatively, our method has no-

ticeable gains in performance over the baseline, as shown

in Table. 11. With the most important metric being for the

masked region, our method has a PSNR increase of 1.59 dB

over Mip-NeRF 360 [2]. Even though the performance on

the full region is not nearly as important, we still see a slight

increase in PSNR.

Qualitative Results: As demonstrated by Fig. 27, our

method is substantially better at reconstructing the human

head. In particular, by setting the background to black,

and reducing overall complexity, we see much better perfor-

mance on the face. Furthermore, the benefits of fine-tuning

the sampling parameter are also shown.

Figure 27: Our method produces results with far less arti-

facts that are caused by the background and improper sam-

pling.

6.3. Discussion

While our proposed method improves both quantitatively

and qualitatively over the baseline method, there is still cer-

tainly more development to be done. At the moment, se-

lecting the best number of points to sample along each ray

is not adaptive, requiring us to examine the renderings and

adjust the setting accordingly. This trial and error process of

determining how many points to sample (32 or 64) can in-

crease the already lengthy processing time for our method.

Assuming the point sampling is correct, the total training

time per subject is about 5 hours. However, if it is not, the

process of finding the correct one can extend the total train-

ing time to approximately 6 hours. In addition to adaptive

sampling and training time, our method is also limited in its

ability to represent all high-resolution details. These are all

potential avenues for future improvements.

We hope that our method will help avoid future artifacts

and lead to more accurately reconstructed human heads.



7. Mitigating Floating Artifacts through Im-

posing Occlusion Regularization and Back-

view Exclusion

Team-5. Y-KIST-NeRF: Yonsei-KIST NeRF

Abstract. The ILSH dataset consists of 52 subjects with

24 views each which can be thought of as a sparse view

problem for a novel view synthesis task. Sparse views

lead to floating artifacts, degrading the quality of novel

views. To overcome this problem, we exclude certain views

during training, and adopt an occlusion regularization term

allowing us to render high quality novel views.

7.1. Methodology

Baseline: To reproduce our baseline method TensoRF [4],

we introduce the parameter values used to produce the base-

line results based on the ILSH dataset. Firstly, create a con-

figs file for the ILSH dataset with the following parame-

ters: dataset name ”llff,” ndc ray 0, n iters 50000, n lamb

sigma [16,4,4], n lamb sh [48,12,12], shadingMode MLP

Fea, fea2denseAct relu, view pe 0, fea pe 0, TV weight

density 1.0, TV weight app 1.0. Secondly, set the scene

bounds near far to [3.5,7.0], and the object bounds near far

to [0.4,2.8]. Thirdly, as we set ndc ray 0, comment out some

relevant lines in the LLFF loader. Lastly, disable pose cen-

tering in the LLFF loader.

Removing floating artifacts: To surpass the baseline per-

formance, we introduce occlusion regularization to reduce

the floating artifacts commonly encountered in few-shot

neural rendering tasks. The key idea of this regularization

term is to penalize the density fields near the camera. Ad-

ditionally, we find it beneficial to exclude all the backside

views in the preprocessing step to avoid floating artifacts.

We conjecture that the reason why the baseline method

doesn’t work well for the ILSH dataset is the lack of training

views, which leads to the presence of ”walls” or ”floaters”

near the camera. Regions with minimal overlap in the train-

ing views can result in geometric inconsistencies, causing

unexpected dense volumetric floaters in close proximity to

the camera. To address this, we introduce an effective oc-

clusion regularization technique that penalizes density val-

ues near the camera. This regularization significantly im-

proves the baseline method. Our implementation exten-

sively leverages the FreeNeRF [26] codebase to incorporate

the occlusion regularization.

The approach involves defining a binary mask vector, de-

noted as mk, which determines whether a point should be

penalized or not. Additionally, we sample K points along

the ray in order of proximity to the origin (from near to far),

and σK represents the density values of these points. To

minimize the occurrence of floaters near the camera, we set

the values of mk up to a specific index M (referred to as the

regularization range) to 1, while the rest are set to 0. By do-

ing so, we effectively control the penalization for the points

in close proximity to the camera.

Locc =
[σK ]T ·mK

K
=

1

K

∑

K

σk ·mk (5)

The final loss function consists of four terms, L2 loss

between pixel values Lp, occlusion regularization Locc, and

LTVσ
,LTVc

, which denotes TV (total variation) loss of den-

sity and appearance on our vector and matrix factors, re-

spectively [4].

L = Lp + λoccLocc + LTVσ
+ LTVc

(6)

We empirically find that using 0.1 for λocc and 20 for M
works best with our model.

Input

Output

Backview Exclusion

Figure 28: Our method overview figure, inspired by Ten-

soRF [4]

Evaluation Region Full Region Masked Region Inference

Metric PSNR SSIM PSNR SSIM Time (Sec.)

Baseline Method [4] 19.87 0.69 24.07 0.81 14.50

Our Method 20.73 0.71 25.54 0.82 15.10

Table 12: Quantitative comparison on ILSH dataset. Re-

sults of our baseline and our method. Better results repre-

sented in bold.

7.2. Experimental Results

Experimental environment: We train our model using a

single NVIDIA RTX 6000 Ada Generation GPU with 48GB

of GDDR6 ECC memory and a batch size of 4096.



Phase
Resolution

Time
Input Output

Training 3000×4096 3000×4096 24.20m

Rendering 3000×4096 3000×4096 15.10s

Table 13: Processing time for training and rendering

.

Methods Masked-PSNR

Baseline 24.07

w/o. backviews 24.49

w/t. Locc 24.96

Final Method 25.54

Table 14: Ablation study. We experiment on how each idea

contributes to the rendering quality of our final method. By

using both ideas, we obtain the highest result.

Results : Table 12 shows the image synthesis metrics on

the ILSH dataset. Our approach outperforms the baseline

method in PSNR and SSIM scores, for both full region and

masked region evaluation. Table 14 shows how our method

improves our baseline. In Fig. 31, we present results for

some of the captures used in the quantitative evaluation.

The difficulty in estimating depth between a background

and black hair leads to a significant number of floaters, pri-

marily occurring in regions where the background and hair

are close together. Our method effectively removes these

artifacts positioned near the camera, thereby eliminating

black artifacts from the rendered image. Ablation study on

our ideas are shown in Fig. 29 and Fig. 30.

Baseline Baseline w/o. backviews

Figure 29: Improvement when trained without back-

views. For sparse view settings such as ILSH, excluding

certain views is beneficial for rendering novel views.

Baseline Baseline w/t. Occ reg

Figure 30: Improvements using occlusion regularization.

Occlusion regularization is effective at removing floaters in

the vicinity of the camera.

Baseline Our Method

Figure 31: Qualitative comparison on ILSH dataset.

Near-camera floaters are prominent in our baseline results

while our method reconstructs images with fewer floaters.

7.3. Discussion

Limitation. Our method takes care of floating artifacts,

leading to better geometry for the model to learn. However,

our method struggles to capture high frequency details of

the human face.
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8. MS-TensoRF: Close to the GT partially

Team-6. xoft

Abstract: We defined that the core challenge of this

competition is finding approaches for rendering novel view

images with high-resolution images (3000*4069) and a few

shots (22 images). First, we chose TensoRF as a baseline,

which showed SOTA performances for rendering quality

and memory efficiency. However, TensoRF had issues with

rendering high-frequency features such as hair and skin

texture. Therefore, we applied masked positional encoding

of FreeNeRF and multisampling of Zip-NeRF to overcome

high-quality problems. As a result, we improved qualitative

results on the partial problems of faces, such as hair and

skin texture.

8.1. Methodology

Baselines: The baseline is TensoRF [4] which was sug-

gested by this competition organizer and had great capabil-

ities: 1) superior rendering quality, and 2) a significantly

lower memory footprint. For baseline application, TensoRF

was trained based on subject-specific images and evaluated

each subject individually. For a training step, we applied the

near/far of the scene bound to [3.5, 5.5] without pose center-

ing, the grid’s size to 4003 and others to the defaults as pa-

rameter setting. For a rendering step to find optimal near/far

value to remove artifacts considering a distance from a cam-

era, we set [3.55-3.6] for the near-scene bound. However,

the baseline still had issues that were not able to render hair,

skin texture, pupils and beards that required more detailed

representation than other facial regions compared to ground

true in high-frequency features.

MS-TensoRF: To overcome the issues of TensoRF,

we developed a MultiSampling NeRF(called MS-

NeRF (Fig. 32)) that was integrated with TensoRF’s

volume density (Fig. 28(c)), Zip-NeRF’s multisam-

pling [3] (Fig. 32(a)), and masked positional encoding of

FreeNeRF[26](Fig. 32(b)). We combined Zip-NeRF, which

used multisampling in each conical frustum by a hexagonal

pattern similar to Gaussian, with TensoRF for improving

color rendering of TensoRF. To further explain through

Fig. 32, TensoRF computed the color for the interval points

along a ray. But Zip-NeRF sampled points as the form of

Gaussian between intervals and took the color’s weighted

means that represents the high frequency feature. Addition-

ally, we applied masked positional encoding for improving

overfitting issues to the sparse inputs. As a result, rendering

novel views using 1) volume density of TensoRF and 2)

color value which is sum of masked positional encoding

result, and multisampling result, contributed for better

representation of high frequency features compared to the

baseline.

To be more specific, although TensoRF’s article de-

Figure 32: Overview of MS-TensoRF. BT is the same pro-

cess with the original TensoRF [4]. M is a process of

masked positional encoding. S1 and S2 are MLPs com-

posed of 3 hidden layers each.

Figure 33: Detailed description of color summation from

Fig. 32. We visualized for the boundary between the face

and the background. The y-axis means color and the arrow

means the gradient of color.

scribed that this approach had excellent performance for

rendering quality, the results of baseline shown that ren-

dering novel view images with high resolution images

(3000*4069) and a few shots (22 images) had issues that

did not represent the details of faces such as hair, skin tex-

ture, pupils and beard. In Fig. 33, since TensoRF updates

the gradient only at points t0 and t1, it cannot model the GT

(blue line) in detail by interpolating (orange arrow) for the

color of the points between t. We thought that the causes

were that TensoRF was able to overfit to the low frequency

features and represented better performance for rendering

quality, but did not represent the particular regions that re-

quired more detailed description in high frequency features.

For example, the details of faces are blurry and couldn’t get

a representation of the details.

Firstly, we analyzed the results of baseline in a novel

view image of Fig. 34 and depth image of Fig. 35, then we

understood that volume density from TensoRF was enough

for novel view representation. Therefore, we focused on

the improvement of color representation in high frequency



features. The increase of sampling using a lot of grids is a

simple approach to improve the current issue, however there

are pros and cons that this approach requires a lot of com-

puting resources and time. Therefore, we combined multi-

sampling of Zip-NeRF and volume density of TensoRF. Yet,

partially the result of multisampling with baseline was close

to the ground truth to represent skin texture and hair (Fig. 34

baseline + multisampling), but this created another problem

with black holes like in Fig. 34. This issue is caused by

spatial differences between sampling points from TensoRF

(the sampling points on the ray used for volume density cal-

culation) and Zip-NeRF (the multiple sampling points in-

side a conical frustum used for color calculation). To elab-

orate through Fig. 33, due to the spatial Gap of the sam-

pling points of TensoRF and Zip-NeRF, the gradient calcu-

lated at t0 is backpropogated to multisampled points, and

the multisampled points belonging to the skin are trained

as the background. Because of this reason, for an exam-

ple, the color values of sampling points in the background

(black) were affected to the color values of sampling points

in the skin texture, then background color appeared in the

skin texture regions. In other words, the volume density in

3D areas where actual volume density should have existed

became empty because of spatial differences, generating ar-

tifacts such as black holes and blurry areas on the faces ir-

regularly.

Next, to mitigate these irregular issues, we summed the

color values of multisampling from Zip-NeRF and the color

values of sampling points from TensoRF which are the same

points for color and volume density calculation. To explain

with Fig. 33, if the gradient for interpolation of TensoRF

and the gradient of multisampling are summated, the fi-

nal gradient can be updated to approximate GT. Through

this, irregular issues have been greatly improved. Further-

more, we applied masked positional encoding from FreeN-

erf which used it to start with low frequency features and

gradually train high frequency features to mitigate more the

previous irregular issues, then we slightly improved the is-

sues about irregular artifacts and blurry areas.

In conclusion, our approach used TensoRF for volume

density representation. Multisampling contributed render-

ing of high frequency features to represent the details of

faces. Then, for sampling points for color representation,

we combined TensoRF, Zip-NeRF, and FreeNeRF to miti-

gate irregular black holes and blurry areas. As a results, we

were able to achieve high quality images that better repre-

sent high frequency feature compared to the baseline.

8.2. Experimental Results

Experimental environment: We trained 22 images and

created our model at 50000 iterations for novel view synthe-

sis on an A10 GPU, then rendered novel views using camera

pose information on the same GPU.

Steps Baseline Ours (sec.)

ray sampling 149 149

volume density rendering 22 22

Zip-NeRF sampling 0 18

Zip-NeRF RGB rendering 0 13

TensoRF RGB rendering 90 90

volume rendering 466 466

Total 727 758

Table 15: Processing time for each step.

Evaluation Region Full Region Masked Region
Time (Sec.)

Metrics PSNR SSIM PSNR SSIM

Baseline [4] 20.09 0.65 25.30 0.81 727

Ours 20.01 0.64 25.02 0.80 758

Table 16: Results of baseline and ours on the ILSH dataset

Quantitative Results: Our approach (MS-TensoRF) pre-

sented slightly underperformed PSNR and SSIM scores in

both the full and masked regions. Even though we tried to

find optimal approaches for sampling points of volume den-

sity and color representation using MS-TensoRF, we could

not outperform on a quantitative basis respect to the base-

line. While PSNR and SSIM scores were lower than the

baseline, we adopted MS-TensoRF in context of coordi-

nating quantitative scores based on PSNR and SSIM and

qualitative evaluation based on human eyes. In the next

part, we’ll specify why our algorithm didn’t scored better

in terms of quantitative results.

Qualitative Results: All qualitative results we imple-

mented are shown in the Fig. 34. In the second column,

TensoRF rendered the blurry images. This methodology

made the beard flat and couldn’t represent the lighting in

the pupils at all. The result images in the third column

which we applied multisampling on TensoRF are expressed

high frequency features better than baseline, but it causes

translucent areas that blend into the background and fuzzy

areas resulted from spatial gap. Additionally, we could un-

derstand and verify more details about the generation of ir-

regular artifacts from depth image in the Fig. 35. And our

results in the last column of Fig. 34 rendered same level of

the details with the former one with only very localized ar-

eas of quality loss. Although that remained degraded areas

are difficult to see and our images seem more realistic with

the naked eyes, that regions made the PSNR and SSIM of

our images lower than the images from baseline.

8.3. Discussion

Limitation: MS-TensoRF was developed to outperform

TensoRF’s capabilities through integrating advantages of



Figure 34: Qualitative result of the two portraits of Impe-

rial Light-Stage Head (ILSH) Datasets. Note how detailed

and realistic the beard(top) and pupils(bottom) are in our

approach compared with TensoRF.

Figure 35: Depth images of the methodologies we imple-

mented. If the color is close to red, the the distance of that

pixel is near and if the color is close to blue the distance of

that pixel is far.

TensoRF, Zip-NeRF, and FreeNeRF. Theoretically, our idea

had the possibility to surpass the baseline results, however,

we couldn’t find the best solution fundamentally to remove

spatial differences from sampling points of volume density

and color. Therefore, partially our results looked better than

baseline results to human eyes recognition. Yet, quantitative

results of our results as PSNR and SSIM underperformed

baseline results because of irregular black holes and blurry

areas from spatial differences of sampling points.

Further Improvement: In this competition, we focused

on the development of MS-TensoRF especially with lower

memory usage compared to the original Zip-NeRF ap-

proach. Currently, there are two different sampling struc-

tures based on the grid of TensoRF and Zip-NeRF. As a

future work, we will integrate these two different sampling

structures into one with memory efficiency of TensoRF and

high quality of Zip-NeRF into MS-TensoRF. We will move

this research in a direction where general and productive

results such as realizing metaverse move to the real world

beyond the research area.
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9. Realistic 3D Head Avatar Generation using

Neural Implicit Function based Estimation

of Warping Field and Textures

Team-7. KHAG: KIST-Head Avatar Generator

Abstract This is the factsheet of the Realistic 3D Head

Avatar Generation using Neural Implicit Function based

Estimation of Warping Field and Textures. We used the

Nvdiffrec [19] as our baseline. We suggest a new method

to get realistic 3D head avatars from a small number of

head images. We obtain a warping field that adjusts the

vertices of a base mesh instead of directly optimizing an

SDF and mesh vertex position to get a clean geometry

mesh. Additionally, we use a relative Laplacian loss, a

relative normal loss, an elastic loss, and a volume max-

imization loss to prevent distortion, folding, and noise

on the mesh. Also, we use a uniform light assumption

and hash-grid MLP-based texture estimation instead of

directly optimizing light map and texture maps to remove

the color artifacts. Moreover, we apply the range limit on

textures to remove the remaining color artifacts. Unlike

other NeRF-like methods, our method aims to get not only

good rendered images, but also get a useful mesh model.

The output model of our method preserves the topology

of the base head mesh. If we had the blend shapes for the

base head mesh, we could easily control the mesh model

to make various expressions. Also, our system can easily

generate texture maps(diffuse, material, and normal maps)

using the MLP model. So, by simply modifying the texture

map, we can change the final model’s color or material

properties. The output mesh model is compatible with

common graphics applications like Blender.

9.1. Methodology

Baselines (Nvdiffrec [19]): Nvdiffrec is a method that

reconstructs an arbitrary mesh model and texture maps

from the multiple images using SDF estimation, texture



Figure 36: System architecture of baseline(Nvdiffrec [19])

and Ours.

MLP, mesh optimizatoin, and texture/light map optimiza-

tion with differentiable rasterisation/rendering. For perfor-

mance comparison, we use official GitHub code to run the

Nvdiffrec. Note that, unlike the paper, the official imple-

mentation only supports explicit SDF estimation, exclud-

ing estimation using MLP. Nvdiffrec requires a foreground

mask to train the model. We acquire foreground masks us-

ing the RITM segmentation [22]. Nvdiffrec consists of two

stages. In the first stage, SDF, textures, and a light map

are learned. Due to memory-related issues, 1/4 resolution

images are used instead of the original images. For other

parameters, we use default values. In the second stage,

mesh models and texture maps are generated from the ac-

quired SDF and textures, respectively, and then they are re-

fined. Due to memory-related issues, the original images

were cropped and used for learning (the resolution was not

changed). Parameters in learning are as follows: ’batch

size: 4’, ’iteration: 7000’, ’dmtet grid: 64, ’learning rate:

[0.01, 0.001]’, ’mesh scale: 0.5’, ’train res: [1024,720],

and ’texture res: [4096,4096]. To make the background,

we extract the background from each image using the fore-

ground mask. We get the mean background image from the

extracted background images.

Ours (Getting realistic head avatar): We found that the

learned model in Nvdiffrec had a noisy geometry by opti-

mizing the SDF and mesh vertex position directly. So, in-

stead of using direct optimization, we obtain a warping field

that adjusts the vertices of a base mesh. The warping field

is represented by transforms that are defined by scale, rota-

tion, and translation parameters. We estimate the warping

field by using a MLP model that takes the vertex position

as the input. Also, we found that color estimation by di-

rectly optimizing the texture maps and the light map could

generate many artifacts when there were only a small num-

ber of training images. So, assuming uniform light, we use

Nvdiffrec [19] Ours

1st stage 2nd stage All stages

Geo-

metry

SDF

estimation

Mesh vertex

direct

optimization

Base Mesh based

Warping field(transform)

estimation

Color

Hash grid

MLP based

estimation

Texture

map

optimization

Hash grid MLP

based estimation

w/ ray direction input

Light map optimization Uniform light assumption

Img based loss

Light regularization

Img based loss

Light regularization

Loss
SDF

regularization

Relative

Laplacian

Relative Laplacian

Relative normal

Elastic

Volume maximization

Table 17: Key differences between Nvdiffrec and our

method.

a hash-grid based MLP model that takes a vertex position

and a ray direction as inputs for estimating diffuse, material

and normal values. Moreover, we apply the range limit on

material and normal values to remove the remaining color

artifacts. We also found that we needed to use more reg-

ularization loss to prevent distortion, folding and noise on

the mesh. Thus, a relative Laplacian loss, a relative nor-

mal loss, an elastic loss and a volume maximization loss are

used. Fig. 36 shows the system architecture of the base-

line and ours. Table 17 summarizes the key differences in

methodology between the baseline and our method.

Ablation studies: To check the effect of our component,

we perform ablation studies. We divide the cases into

two, which are related to geometry and color, respectively.

Oursrw represents the case of using the base mesh with-

out regularization loss and Warping field estimation. Oursw
represents the case where the base mesh and regularization

are adopted without Warping field estimation. In case of

Oursrw and Oursw, the vertex positions of the base mesh

are directly optimized to reconstruct the geometry. Oursrurl
represents the case of using the texture MLP without ray di-

rection, uniform light, and texture map range limit. Oursrl
represents the case of using the texture MLP, ray direction

and uniform light without texture range limit. Table 20 sum-

marizes the differences between each ablation case (‘Ray

d’, ‘U-light’, and ‘T-RL’ represent usage of ray direction

uniform light estimation, and texture range limit, respec-

tively).

9.2. Experimental Results

Experimental environment: Table 18 describes our ex-

perimental environment. We denote the detailed processing

time in Table 19. The preparing environment step is run

only once for each subject. Therefore, when generating a



CPU Intel Core i9-10920X

RAM: 64 GB

GPU NVIDIA RTX A6000/PCIe/SSE2

OS Ubuntu 18.04.6 LTS 64-bit

Cuda version 11.3

Python version 3.8.12

Table 18: Experimental environment.

Steps
Resolution

Time (Sec.)
Input Output

Prepare environment

(ex. build light)
- - 2.352

Neural Rendering 3000×4096 3000×4096 0.227

Total 3000×4096 3000×4096 2.579

Table 19: Processing time for each step.

Methods
Base

mesh

Regular

-ization

Warp

-ing

Texture

MLP

Ray d

U-light
T-RL

Masked

-PSNR

Oursrw o x x o o o 20.75

Oursw o o x o o o 22.24

Oursrurl o o o o x x 23.86

Oursrl o o o o o x 22.39

Ours o o o o o o 22.78

Table 20: Setting and a masked-PSNR score for each abla-

tion study on sub-dataset (for the first three subjects).

Evaluation Region Full Region Masked Region
Time (Sec.)

Metric PSNR SSIM PSNR SSIM

Nvdiffrec [19] 20.03 0.62 22.96 0.78 0.222

Ours 22.14 0.64 23.39 0.79 2.579

Table 21: Quantitative results of the baseline and our

method.

plurality of novel view images for one subject, the prepara-

tion step may be skipped after the first image is generated.

Quantitative and Qualitative Results: Table 21 shows

that our method gets better quantitative scores than the base-

line in every case. Fig. 37 shows qualitative results. It

can be noticed that our method has better results than the

baseline. We can especially see that our results have much

cleaner surfaces and no artifacts on textures.

Quantitative and Qualitative Results (Ablation studies):

Table 20 denotes the PSNR of each ablation study. Fig. 38

and 39 show the rendered result of each ablation study. In

Fig. 38, we clearly see that each component can help to im-

prove the geometry quality. The figures show that using

a base mesh instead of a SDF removes clutter from empty

space. Adding the regularization reduces the noise on the

Figure 37: A few examples for qualitative comparison.

surface. By using warping field estimation instead of direct

vertex optimization, we can get more clean surfaces. As

a result, we can gain the PSNR. In Fig. 39, we can notice

that the usage of a texture range limit raises the PSNR. We

can see some color artifacts (refer the red box in Fig. 39)

without the texture range limit removed. Note that the re-

sult without uniform light assumption and ray direction in-

put can have better PSNR score as can be seen in Table 20

(Oursrurl case). However, we can see the artifacts in the

output figure (Oursrurl case). We think that the uniform

light assumption and ray direction input solve the color ar-

tifacts, but they can lead to underfitting.

9.3. Advantages of Our methods

Unlike other NeRF-like methods [17], our method aims

to get not only good rendered images but also a useful mesh

model. The output model of our method preserves the topol-

ogy of the base head mesh. If we had the blend shapes

for the base head mesh, we could easily control the mesh

model to make various expressions. Also, our system can

easily generate the texture maps (diffuse, material, and nor-

mal maps) using the MLP model. So, by simply modifying

the texture map, we can change the final model’s color or

material properties. The output mesh model is compatible

with common graphics applications like Blender.

9.4. Discussion

Limitation. Our method requires a base head mesh to re-

construct the head model. If we want to reconstruct other

objects, a base mesh with a different shape is required. Un-

like NeRF, which performs volume-based reconstruction,

we use mesh-based reconstruction. So it is difficult to re-

store geometry that is significantly different from the topol-

ogy of the base mesh (ex., thin hair, very complex surfaces).

Also, we found that the uniform light assumption and

using ray direction as an input to the model decreased the

PSNR. So, we think that we need more advanced methods



Figure 38: A few examples for qualitative comparison of

ablation study (geometry).

for estimating the light when there are only a small number

of training images.
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