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Abstract— In this study, we present a visual servo control 

framework for fully automated nasopharyngeal swab robots. 

The proposed framework incorporates a deep learning-based 

nostril detection with a cascade approach to reliably identify 

the nostrils with high accuracy in real time. In addition, a 

partitioned visual servoing scheme that combines image-based 

visual servoing with axial control is formulated for accurately 

positioning the sampling swabs at the nostril with a multi-DOF 

robot arm. As the visual servoing is designed to minimize an 

error between the detected nostril and the swab, it can 

compensate for potential errors in real operation, such as 

positioning error by inaccurate camera-robot calibration and 

kinematic error by unavoidable swab deflection. The 

performance of the visual servo control was tested on a head 

phantom model for 30 unused swabs, and then compared with 

a method referring to only the 3D nostril target for control. 

Consequently, the swabs reached the nostril target with less 

than an average error of 1.2±0.5 mm and a maximum error of 

2.0 mm via the visual servo control, while the operation without 

visual feedback yielded an average error of 10.6±2.3 mm and a 

maximum error of 16.2 mm. The partitioned visual servoing 

allows the swab to rapidly converge to the nostril target within 

1.0 s without control instability. Finally, the swab placement at 

the nostril among the entire procedure of fully automated NP 

swab was successfully demonstrated on a human subject via the 

visual servo control. 

I. INTRODUCTION 

Coronavirus disease 2019 (COVID-19) has become a 
global pandemic with over 430 million cases worldwide, 
causing a social and economic crisis [1]. Early diagnosis is 
regarded as the most critical factor for preventing the rapid 
spread of COVID-19. However, extensive swab sampling 
may pose a high risk of cross-infection from close contact 
with patients. In addition, the heavy workload of medical 
professionals increases the healthcare burden. Furthermore, 
the diagnosis result and comfort level during the sampling 
procedure may be influenced by the degree of skills and 
fatigue of the medical staffs. 

Recent studies have suggested that automation of 
COVID-19 sample collection can address these issues by 
performing it in a safe, standardized, and efficient manner [2], 
[3]. For example, a self-administered swab robot has been 
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reported by a research team in Singapore, in which swab 
insertion and withdrawal operations are only automated, 
whereas the rest of the procedures are controlled by patients 
[4]. A remotely operated swab robots have also been 
presented [5], [6]. Although such teleoperation can reduce the 
risk of cross-infection and leverage the experience of medical 
staffs during control, the healthcare burden led by the staffs’ 
intervention still remains. 

Fully automated systems have also been introduced, 
which can perform oropharyngeal (OP) or nasopharyngeal 
(NP) swabs with minimal intervention by the staffs [7], [8]. 
For instance, researchers from the University of Southern 
Denmark developed a fully automatic throat swab robot that 
identifies the swabbing area in the throat using computer 
vision, and conducts gentle swabs with force control [7]. Xie 
et al. proposed a robot-assisted OP swab sampling system 
with a rigid–flexible coupling robot for safe operation [8]. 
This robot adopts a deep learning-based approach to 
recognize and place the swab on target positions, such as the 
tonsil and uvula. Furthermore, it incorporates optimization 
control with the oral cavity center constraint and force data 
for sample collection. 
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Figure 1.  Test setup for the visual servo control of a nasopharyngeal swab 

sampling robot with a testing swab. 
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While nasopharyngeal (NP) swabs are the reference 
sampling method to detect COVID-19 [9], only a few studies 
of fully automated NP swabs have been reported. For 
example, Taiwan's biotechnology startup Brain Navi Co., Ltd. 
launched a fully automated NP swab robot that can identify 
the patient’s facial structure and precise nostril location for 
collecting specimens from the nasopharyngeal target position 
[10]. However, the robot system requires an extra guiding 
tool; a patient should put on a nasal clip to provide key 
reference points for the machine operated. However, it may 
raise issues such as the replacement of the clip and patients’ 
discomfort. 

Unlike the OP swabs, the full automation of the NP swabs 
still poses a challenge in accurately detecting the small nostril 
and inserting the swab into its small orifice; the average size 
of the nostrils is 10–12 mm [11], whereas the mean of 
maximum mouth opening (MMO) in healthy subjects is 
about 47.0 mm [12]. Consequently, a flocked swab with a 
diameter of approximately 3 mm must be accurately located 
at the nostril within an error of 3–4 mm for NP swabs. 
Although the accurate positioning of the swab can be 
achieved by precise control of robot systems, any registration 
error between the camera and robot coordinates may hinder 
the accurate positioning of the swab on the target. 
Furthermore, unavoidable kinematic errors caused by 
deflected swabs may be involved in the control, which 
considerably hampers fully automated NP swabs in practice. 
A straight swab model is typically used for solving 
kinematics. However, the sampling swabs made of slender 
plastic shafts are fairly flexible, thus unused swabs may 

undergo initial deflection during packaging and/or handling 
the swabs in peel packs even before sample collection as 
shown Fig. 1. 

In this paper, we tackle these issues that arise primarily 
when placing the swab at the nostril as part of the full 
automation of the NP swabs. To accurately place the 
sampling swab at the nostril without an extra guiding tool, a 
visual servo control framework is proposed with deep 
learning-based nostril detection. The proposed visual servo 
control is validated using a custom-built 
6-degrees-of-freedom (6-DOF) robotic arm and a LiDAR 
depth camera in real time. For visual servoing of the 
multi-DOF robot, we introduce a partitioned visual servoing 
scheme applicable to automated NP swabs. The visual 
servoing scheme was tested on a head phantom model using 
unused swabs with  a variety of initial deflections, and then 
compared with position control that simply places the swab 
on the detected nostril target in 3D. Finally, swab placement 
at the nostril via visual servo control was demonstrated on a 
human subject. 

II. MATERIALS AND METHODS 

A. Overall System 

The testbed for the proposed visual servo control 
comprises a custom-built serial robotic arm, LiDAR depth 
camera (Intel® RealSense™ LiDAR Camera L515, Intel 
Corp., USA), and swab adaptor to accommodate a sampling 
swab in the robot. The robotic arm provides six degrees of 
freedom (6-DOF) in motion for automated NP swab 
sampling. The 3-DOF motion is primarily used to position 
the tip of the swab in 3D, and the 2-DOF motion is used to 
adjust the insertion angle into the nostril—pan and tilt. The 
remaining DOF is employed to rotate the swab for sample 
collection. A trajectory from a current swab’s tip poses to a 
target pose—the nostril location in 3D and insertion angles–is 
planned inline for a specified time to reach the target. 
Considering the trajectory, the corresponding joint angles for 
every control time tick are calculated using the inverse 
kinematics of the 6-DOF robot arm. The robotic arm is 
controlled by a host PC (Jetson AGX Xavier, Nvidia Corp., 
USA) running at 100 Hz on the robot operating system (ROS) 
[13]. In addition, the camera is attached to the base of the 
robot in an eye-to-hand configuration, as considering the 
minimum depth distance to reliably detect the nostril (~25 
cm). 

To determine the nostril target position in 3D, the vision 
system first detects the nostril in a 2D image, and then 
extracts the corresponding 3D position from a depth map 
acquired by the LiDAR. Prior to controlling the robotic arm, 
coordinate registration between the RGB camera and robotic 
arm (hand-eye camera calibration) is conducted using a 
checkboard attached to the distal end of the robotic arm. 
These two systems exchange data with each other via TCP/IP 
communication: the nostril position in 2D and 3D, current 
swab position, and current robot joint angles. 

For visual servo control of the swab, the tip of the swab is 
detected, and then controlled to minimize the error between 
the tip and the nostril in the 2D image. Correcting the tip 
position via visual servoing results in the re-planning of the 
trajectory inline, while approaching to the nostril target. The 

 

Figure 2.  Control flow of automated nasopharyngeal swab sampling. 
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details of the visual servoing scheme are described in detail 
later. A schematic of the overall system and the control flow 
is shown in Fig. 2.  

B. Nostril Detection 

Accurate detection of the nostril is critical for the 
seamless operation of automated NP swab sampling, in 
which the robot automatically obtains the nostril target and 
inserts the swab into the nostril. However, it is challenging to 
detect a large variety of human nostrils with high precision. 
The shape and size of nostrils vary from person to person. 
Moreover, the angle and shadow of the nose affect the 
appearance of the nostrils in the images. Therefore, nostril 
detection algorithms based on geometric shapes or colors are 
prone to failure. We also found that the nostril detection 
accuracy of the Viola-Jones algorithm—a common machine 
learning algorithm for face detection is only 24%. 
Specifically, it shows substantial failure in detecting wide or 
snub noses. 

Therefore, we introduce a deep learning-based method 
with a cascade scheme for accurately detecting the nostrils. 
First, the proposed method finds the subject’ nose and sets it 
as a region of interest (ROI) to detect the nostrils. The 
nostrils are then found in the given ROI. This cascade 
scheme thus significantly improves the accuracy of nostril 
detection compared with directly searching the nostrils in an 
entire image. For example, it mitigates false-positive cases, 
such as eyes or mouth detected as nostrils. 

 Compared with various object detection algorithms, the 
YOLOv4 tiny—a lightweight version of YOLOv4 [14] is 
adopted for the real-time detection of the nose and nostrils 
with high accuracy. To learn the network, we considered a 
training dataset of 2150-face photos from the 
Flickr-Faces-HQ Dataset (FFHQ), and then used a total of 

8600 photos generated by data augmentation including 
horizontal flipping, color transformation (saturation and 
exposure), random rotation, shearing, and cropping. We 
trained the network with an input image size of 640 × 640 
and a batch size of 64. The results showed a detection 
accuracy of 99.0% with a 0.022 s-processing time on Jetson 
AGX Xavier with GPU acceleration in detecting the nose for 
a testing set of 100-face photos. A single false-positive result 
was accidently detected in the partial image of the the finger 
(with black-polished nail) stroking one's head. For the 200 
nostrils of the 100 testing images, a detection accuracy of 
96.0% was obtained, and the processing time for a particular 
ROI was 0.016 s (see Fig. 3). Eight false-negative detections 
were found owing to the extreme head orientation. In both 
tests, a detected bounding box was classifed as true-positive 
only if IoU (intesection over union) is greater than 0.8. 
Moreover, we investigated the detection performance for 
images with various head orientations captured using our 
automated swap sampling system. The nostrils were 
successfully detected in most of the head directions, as shown 
in Fig. 4. 

 Because the successive detection of both the nose and 
nostril within 30 FPS could be limited, the nose detection is 
only executed when necessary. For example, the nose 
detection is conducted once at the beginning of the automated 
procedure, and the detected nose offers the ROI for searching 
the nostrils. Once we detect the nostil as the form of a 

 

Figure 3.  Cascade detection of nose and nostril and testing results. 
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bounding box given the ROI, a target point for placing the 
swab is specified by the moment center of the dark nostril 
region in the bounding box. The center location of the ROI is 
also kept updated via the Kalman filtering of the target point 
without running the nose detection; either the right or left 
nostril can be used selectively. If the nostril detecion fails, it 
repeats the nose detection until a new ROI is found. The 
overall procedure for the nostril detection is illustrated in Fig. 
5. 

C. Swab Tip Detection 

 For visual servoing of the sampling swab, we detect and 
track the tip of the swab in addition to the nostril detection. 
The swab is an easily bendable stick, 150 mm long, which 
includes a flocked head with a diameter of 3 mm at the tip. 
To reliably detect the swab in real time, an ROI is set by the 
projection of the swab tip's 3D position into the 2D image, as 
shown by the cyan square box in Fig. 6. The 3D position of 
the tip is estimated from the kinematic chain of the robot and 
swab, assuming that it is a straight and rigid shaft attached to 
the swab adaptor. Thereafter, the 3D tip position is streamed 
to the vision system via the TCP/IP communication. The 3D 
tip position is then mapped onto the image via a projection 
matrix given by the camera-robot calibration, which creates a 
2D ROI for searching the tip in the image. Considering the 
2D ROI, the swab is identified and binarized by HSV-color 
thresholding to obtain a bright and white swab. To eliminate 
spurious pixels, we use the RANSAC algorithm while 
assuming that the swab was a first-order polynomial with a 
certain width threshold. Considering a set of pixel points for 
the swab, the endpoint among the points projected onto the 
line is regarded as the tip location in the image. We apply 
Kalman tracking to the 2D swab tip position, as the tip 
detection may occasionally become unstable or undetectable. 

D. Visual Servo Control 

As mentioned earlier, it is challenging to accurately place 
the swab at the 3D nostril target within an error range of a 
few millimeters because of potential error sources: 1) the 
positioning error of the end-effector of the serial robot 
manipulator, 2) the detection error of the LiDAR depth 
camera, 3) the registration error between the camera and 
robot coordinates, and 4) kinematic model error owing to 
swab deflection. Among these error sources, our study focus 
on registration error and swab deflection, which are 
unavoidable at a certain level. 

Registration errors may occur in the process of finding a 
spatial transformation between the robot and camera 
coordinates, which is described by the rotation (i.e., 
orientation) and translation of the camera with respect to the 
robot (world) frame. The translational error in the registration 
causes a proportional error in positioning the swab in 3D. In 
addition, the orientation error found in the rotation further 
exacerbates the positioning error of the end effector. Because 
the camera should be at a certain distance (herein, 
approximately 300 mm) from an object to detect depth using 
the ToF principle, even a small angular error causes a large 
displacement error while positioning the swab. Furthermore, 
the kinematic model error caused by the bent swab is more 
pronounced during automated swab control. An intact swab 
is prone to deflection (see Fig. 1). For instance, if the error of 
the camera's facing angle with respect to the robot base is 
greater than 2.0°, a positioning error of 5.2 mm at the tip may 
occur, where the camera's translational error and tip 
deflection is neglected. Likewise, a 5.2-mm targeting error at 
the swab’s distal end can also occur even with the flawless 
robot-camera calibration if the swab tip is bent by 2.0° from 
its central axis. Either case would result in failure of inserting 
the swab into the nostril with a diameter of 10 mm. Fig. 6 
shows the actual swab and virtual swab created by the 
projection of the ideal swab location (see the cyan line), 
while approaching the nostril; the projection of the tool tip is 
calculated via the robot-camera calibration assuming the 
ideal robot kinematics and the straight swab. 

 Therefore, we propose a visual servoing scheme that can 
compensate for the fundamental errors involved in the 
automated NP swab procedure. Thus, the visual servoing 
aims to gradually locate the swab onto the nostril using the 
2D camera image until the swab is inserted into the nostril. 
However, a new visual servoing framework for swab control 
is required, unlike general visual servoing applications that 
rely on common feature points detected in successive image 
frames for controlling multi-DOF robots. Because we can 
obtain the error of a single feature point only (the nostril 
target), the 2-DOF control of the 6-DOF robot is allowed 
only via image-based visual servoing (IBVS). Thus, we adopt 
a partitioned visual servoing scheme introduced for beam 
control in automated laser microsurgery [16]. The 6-DOF 
motion of the swab tip is decoupled into a 2-DOF pan-tilt 
motion at the tip, 3-DOF translational motion of the robot 
head, and 1-DOF motion along the swab axis. The decoupled 
2-DOF motion is then controlled via IBVS to locate the swab 
tip onto a detected nostril position using the camera.  

For IBVS, we first formulate an analytical image 
Jacobian as introducing a 3D task plane—a virtual plane 
parallel to the head's frontal plane, which results in an 
interaction matrix for differential motions, as in (1). 

 
image task

p
 Jx , (1) 

where 2x1image x and 2x1task   are differential 

motions in the image and task planes, respectively.  

 To derive the interaction matrix 2x2

p
J , two differential 

motions 
u

P  and 
v

P  are defined at the task plane 

containing the bases, u and v as in (2). 

 

Figure 6.  Schematic of patitioned visual servoing for the NP swab. 

Task Space

+

itpre
tipP

+1itgoal
tipP

1itpre
tip
P

+1itpre
tipP

1i

i

t
t

d 

tipt

Image Space

2D
tipE

1

i

i

t
t

d




tipv

1itvs
tip
P : via IBVS

1858



  

tip

u

tip

task target task

u

u task target task

u u


 

P

P

P

P
P  and 

tip

v

tip

task target task

v

v task target task

v v


 

P

P

P

P
P  (2) 

Their corresponding differential motions 
u

p  and 
v

p  in 

the image plane are also defined using a projection matrix, 

p
M  provided by the camera-robot calibration: 

 
u p u

  p PM  and 
v p v

  p PM . (3) 

Because the differential motions, 
u

P  and 
v

P , are 

subject to the canonical bases of the task plane coordinates, 

the matrix 
p
J  is composed by the two vectors, 

u
p  and 

v
p , as in (4). 

   2 2

u v p

  Jp p I , (4) 

where 
2 2
I  denotes the identity matrix. Thereafter, we 

obtain the inverse of the interaction matrix, 
1

p


J , by 

considering the inverse of the matrix  u v
 p p  that has a 

full rank. Accordingly, the 3D position error between the 

nostril target and the current swab tip at the task plane, 
2x1task

tip
 E , can be estimated from the corresponding 2D 

error at the image plane, 
2x1image

tip
 e  as in (5).  

 
1task image

p pti tip

  eJE  (5) 

The joint angles to correct the error are approximated as 

,pitch yaw
θ  by assuming the pivotal motion of the swab with 

small angles around the swab adapter and the length of the 

swab specified as 
swab

l :  

 ,
1/ task

ish wa ac bpit y w t p
l  θ E , (6) 

Herein, the deviation of the swab length that may occur by 

installation or by its deflection is negligible.  

Finally, we obtain an image Jacobian J  to control the 

joint angles 
,pitch yaw

θ  by substituting (5) into (6) for a 2D 

error 
image

tip
e  between the nostril target and the current tip 

positions on the image plane as in (7). 

 
1

,

image

pitch yaw tip

  θ eJ , (7) 

where 
1 11/

swab p
l J J . The joint angles for the pitch and 

yaw control are regulated by a PD controller (8), which 

minimizes the error between the current swab tip and nostril 

positions. 

 1

, , , ,

i i i i

pitch yaw pitch yaw pitch yaw pitch y wk ad
p p   θ θ θ θ  (8) 

Subsequently, we define a target position 
1vs i

tip


P  regulated 

by visual servo control by combining the joint angles 
1

,

i

pitch yaw


θ  with the other pre-planned joint angles via the 

forward kinematics of the robot arm: 

 
1 1

,
FK( , ),vs i i i i

tip xyz pitch yaw roll
 P θ θ . (9) 

Unless the swab is perpendicular to the task plane, the 
advancement of the tilted swab toward the nostril can induce 
an error at the next image frame. Therefore, we introduce the 
axial control of the swab during the visual servoing. The 
axial control enforces the swab to move along an axis 

described by the nostril and the target positions, 
nostril
P  and 

1vs i

tip


P , respectively. Consequently, the final goal position 

1goal i

tip


P  is defined by enforcing axial movement as in (10). 

 
1 1 1 1 1( ) ,goal i vs i i pre i pre i i

tip tip tip tip tip tip

       P P v P P v  (10) 

where 
1 1 1( ) /i vs i vs i

tip nostril tip nostril tip

    v P P P P and 
pre i

tip
P  are 

the pre-planned tip positions at the ith control-loop tick. The 

 

Figure 7.  Comparison of the visual servo control vs. the open-loop control in the head phantom model: (a) still-cut images during the test and (b) the final 

locations of the testing swabs with spect to the nostril target (0, 0). 
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TABLE I.  AUTOMATED SWAB PLACEMENT RESULT 

Error Position Control Visual Servo Control 
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16.54 ± 3.53a px 
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a. Standard Deviation. 
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corresponding joint angles for 
1goal i

tip


P  are then calculated 

using the inverse kinematics of the robot arm and used as 
control inputs. The corresponding notations and control 
procedures are illustrated in Fig. 6. 

III. EXPERIMENTS AND RESULTS 

To validate the performance of the proposed visual 
servoing in the automated NP swab, the swab placement at 
the nostril was tested in a head phantom model attached to 
the head fixture with a pre-determined insertion angle 
(approximately parallel to the palate [15]). The procedures 
were as follows: 1) identifying a nostril target location and 2) 
positioning the swab at the nostril using visual servo control. 
First, the 3D nostril target position was identified by 
deep-learning-based nostril detection in 2D and subsequent 
mapping from its image coordinates to the 3D LiDAR 
coordinates. The 3D target location in the LiDAR coordinates 
was then transformed to robot coordinates by camera-robot 
calibration and continuously updated every 33 ms. 
Considering the 3D target location of the nostril in robot 
coordinates, the 6-DOF robotic arm was controlled to 
accurately locate the sampling swab at the nostril via visual 
servoing of the swab detected in 2D. To consider initial swab 
deflection, the test was repeated for 30 intact NP swabs, 
(Noble Biosciences, Inc., Korea). The results of the visual 
servo control were compared with those of the position 
control. The position control simply follows a pre-planned 
trajectory, given the detection and localization of a nostril 
target in the 3D robot coordinates without visual feedback 
involved. The execution time for the procedure was set to 10 
s, and the nostril and swab locations were logged using 
videos during the test for further analysis. 

Fig. 7(a) shows the still-cut images of the videos collected 
during the test for the visual servo control versus the position 
control. Note that the actual swab shown in the camera image 

is different from the projection of its ideal kinematic model, 
as shown by the cyan line in the images. Nevertheless, the 
visual servoing allowed the swab tip to converge to the 
nostril target within 1.0 s in the 2D image (see the red (nostril 
target) and yellow (tip) markers in the images). However, for 
the position control, such an initial discrepancy yielded a 
final positioning error in the swab tip. The average 
positioning error was found to be 1.74 pixel (corresponding 
to 1.11 mm error) for the visual servo control, whereas it 
drastically increased to 16.54 pixel (10.58 mm) for the pure 
position control without visual feedback; to convert the error 
in pixel to mm, we adopted a scale factor 0.64 mm/pixel 
defined at a plane tangent to the phantom's nostril. 

From a safety perspective, the maximum error can be an 
important metric because any failure of an operation may 
damage patients. The maximum error of the visual servo 
control was approximately 2 mm, thus all 30 trials were 
successful. In addition, the final swab location by the visual 
servo control is well clustered around the nostril target as 
resulting in a standard deviation of 0.46 mm. However those 
by the open-loop control are scattered on the left of the target, 
while yielding a larger standard deviation of 2.26 mm as 
shown in Fig. 7(b). A consistent offset from the target may be 
led primarily by camera-robot calibration, while such a 
scattered pattern can occur owing to variations in swab 
deflection. 

We also investigated the performance of the visual servo 
control incorporating the axial control scheme compared to 
the 2-DOF angular control, as shown in Fig. 8. The error 
between the swab and nostril locations was tracked during 
the visual servoing procedure. As expected, without the axial 
adjustment in control, the trajectory of the 2-DOF control 

 
Figure 8.  (a) Swab tip trajectory for different axial control schemes and 

(b) positioing error over time during the visual servoing. 

(a)

w/o Axial Control with Axial Control

#Frame

(b)

 

Figure 9.  Visual servoing demonstration on a human subject: : (a) still-cut 

images during the test and (b) the positioning error over time. 

0.0 s 0.5 s 1.0 s
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fluctuated with time. However, the axial control allows for 
the swab tip to rapidly converge to the nostril target without 
significant fluctuation in its trajectory. Hence, it is found that 
the augmentation of the axial control can contribute to 
speeding up the approaching procedure as mitigating 
oscillation and setting higher gains for control. 

Finally, the proposed visual servoing was demonstrated 
on a human subject using an identical protocol performed in 
the phantom test, except approaching speed; the execution 
time for the swab placement was set to 3.0 s as applying the 
higher control gains. Accordingly, the positioning test was 
conducted until the swab reached the nostril, excluding 
further steps for actual NP swab sampling. Unlike the 
immobilized phantom model, any head motion can likely 
induce the movement of the nostril target. Nevertheless, we 
obtained a similar outcome in the phantom test, as shown in 
Fig. 9. The swab could reach the nostril target within 2.5 s 

IV. CONCLUSION AND FUTURE WORK 

We presented a visual servo control framework that can 
address the issues raised potentially in placing the swab at the 
nostril—the first and critical procedure of fully automated NP 
swab robots. Deep learning-based nostril detection with the 
cascade detection approach allows the accurate and reliable 
detection of nostrils in real time for a variety of shapes and 
sizes. The partitioned visual servo control scheme that 
combines image-based visual servoing with axial control can 
successfully compensate for errors caused by the 
robot-camera calibration and unavoidable swab deflection. 
Consequently, the proposed framework enables highly 
accurate swab placement at the nostril in real-time during 
fully automated NP swab sampling. 

Future work will include the development of robust swab 
detection algorithms using deep learning-based methods. 
Potential issues that may arise in practical applications but 
not tackled in this study are the instantaneous head 
movement and the occlusion of the nostril. These will be 
addressed in further development by tracking the patient's 
head. In addition, the patient-specific insertion angle for NP 
swabs will also be studied. To accomplish a fully automated 
NP swab for human subjects, sample collection with force 
control, automatic vial capping mechanism, and sterilizing 
interfaces for the robot will also be involved.  
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