SPC-180002, a SIRT1/3 dual inhibitor, impairs mitochondrial function and redox homeostasis and represents an antitumor activity

Authors
Cho, YenaHwang, Jee WonPark, No-JuneMoon, JunghyeaAli, Khan HashimSeo, Young HoKim, In SuKim, Su-NamKee, Yong
Issue Date
2023-11
Publisher
Elsevier BV
Citation
Free Radical Biology and Medicine, v.208, pp.73 - 87
Abstract
Since sirtuins (SIRTs) are closely associated with reactive oxygen species (ROS) and antioxidant system, the development of their selective inhibitors is drawing attention for understanding of cellular redox homeostasis. Here, we describe the pharmacological properties of SPC-180002, which incorporates a methyl methacrylate group as a key pharmacophore, along with its comprehensive molecular mechanism as a novel dual inhibitor of SIRT1/3. The dual inhibition of SIRT1/3 by SPC-180002 disturbs redox homeostasis via ROS generation, which leads to an increase in both p21 protein stability and mitochondrial dysfunction. Increased p21 interacts with and inhibits CDK, thereby interfering with cell cycle progression. SPC-180002 leads to mitochondrial dysfunction by inhibiting mitophagy, which is accompanied by a reduction in oxygen consumption rate. Consequently, SPC-180002 strongly suppresses the proliferation of cancer cells and exerts anticancer effect in vivo. Taken together, the novel SIRT1/3 dual inhibitor, SPC-180002, impairs mitochondrial function and redox homeostasis, thereby strongly inhibiting cell cycle progression and cancer cell growth.
Keywords
ACTIVATED PROTEIN-KINASE; FOXO TRANSCRIPTION FACTORS; DIRECT PHOSPHORYLATION; CELL-DEATH; STRESS; CANCER; AMPK; DEACETYLATION; ACETYLATION; METABOLISM; SIRT1/3 dual inhibitor; SPC-180002; Mitochondrial dynamics; Cellular respiration; Redox homeostasis; Mitophagy
ISSN
0891-5849
URI
https://pubs.kist.re.kr/handle/201004/113147
DOI
10.1016/j.freeradbiomed.2023.07.033
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE