Organization of Purkinje cell development by neuronal MEGF11 in cerebellar granule cells

Authors
Jun, SoyoungKim, MuwoongPark, HeeyounHwang, EunmiYamamoto, YukioTanaka-Yamamoto, Keiko
Issue Date
2023-09
Publisher
Cell Press
Citation
Cell Reports, v.42, no.9
Abstract
As cerebellar granule cells (GCs) coordinate the formation of regular cerebellar networks during postnatal development, molecules in GCs are expected to be involved. Here, we test the effects of the knockdown (KD) of multiple epidermal growth factor-like domains protein 11 (MEGF11), which is a homolog of proteins mediating astrocytic phagocytosis but is substantially increased at the later developmental stages of GCs on cerebellar development. MEGF11-KD in GCs of developing mice results in abnormal cerebellar structures, including extensively ectopic Purkinje cell (PC) somas, and in impaired motor functions. MEGF11-KD also causes abnormally asynchronous synaptic release from GC axons, parallel fibers, before the appearance of abnormal cerebellar structures. Interestingly, blockade of this abnormal synaptic release restores most of the cerebellar structures. Thus, apart from phagocytic functions of its related homologs in astrocytes, MEGF11 in GCs promotes proper PC development and cerebellar network formation by regulating immature synaptic transmission.
Keywords
GENE-EXPRESSION; POSTNATAL-DEVELOPMENT; SYNAPSE ELIMINATION; SPATIAL-ORGANIZATION; MICE LACKING; RECEPTOR; PARALLEL; RELEASE; CORTEX; GLUR-DELTA-2
ISSN
2211-1247
URI
https://pubs.kist.re.kr/handle/201004/113269
DOI
10.1016/j.celrep.2023.113137
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE