Nano-Biotechnology for Bacteria Identification and Potent Anti-bacterial Properties: A Review of Current State of the Art

Authors
Kaushal, ShimayaliPriyadarshi, NiteshGarg, PriyankaSinghal, Nitin KumarLim, Dong-Kwon
Issue Date
2023-09
Publisher
MDPI
Citation
Nanomaterials, v.13, no.18
Abstract
Sepsis is a critical disease caused by the abrupt increase of bacteria in human blood, which subsequently causes a cytokine storm. Early identification of bacteria is critical to treating a patient with proper antibiotics to avoid sepsis. However, conventional culture-based identification takes a long time. Polymerase chain reaction (PCR) is not so successful because of the complexity and similarity in the genome sequence of some bacterial species, making it difficult to design primers and thus less suitable for rapid bacterial identification. To address these issues, several new technologies have been developed. Recent advances in nanotechnology have shown great potential for fast and accurate bacterial identification. The most promising strategy in nanotechnology involves the use of nanoparticles, which has led to the advancement of highly specific and sensitive biosensors capable of detecting and identifying bacteria even at low concentrations in very little time. The primary drawback of conventional antibiotics is the potential for antimicrobial resistance, which can lead to the development of superbacteria, making them difficult to treat. The incorporation of diverse nanomaterials and designs of nanomaterials has been utilized to kill bacteria efficiently. Nanomaterials with distinct physicochemical properties, such as optical and magnetic properties, including plasmonic and magnetic nanoparticles, have been extensively studied for their potential to efficiently kill bacteria. In this review, we are emphasizing the recent advances in nano-biotechnologies for bacterial identification and anti-bacterial properties. The basic principles of new technologies, as well as their future challenges, have been discussed.
Keywords
DESORPTION IONIZATION-TIME; FLIGHT MASS-SPECTROMETRY; RESISTANT STAPHYLOCOCCUS-AUREUS; PATHOGENIC BACTERIA; GOLD NANORODS; PHOTOTHERMAL ABLATION; NANOPARTICLES; BLOOD; SEPSIS; AGENTS; bacteria identification; nanotechnology; sepsis; anti-bacterial activity; antimicrobial resistance
ISSN
2079-4991
URI
https://pubs.kist.re.kr/handle/201004/113295
DOI
10.3390/nano13182529
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE