Dual-light emitting 3D encryption with printable fluorescent-phosphorescent metal-organic frameworks

Authors
Oh, Jin WooLee, SeokyeongHan, HyowonAllam, OmarChoi, Ji IlLee, HyeokjungJiang, WeiJang, JihyeKim, GwanhoMun, SeungsooLee, KyuhoKim, YeonjiPark, Jong WoongLee, SeonjuJang, Seung SoonPark, Cheolmin
Issue Date
2023-09
Publisher
Nature Publishing Group
Citation
Light: Science & Applications, v.12, no.1
Abstract
Optical encryption technologies based on room-temperature light-emitting materials are of considerable interest. Herein, we present three-dimensional (3D) printable dual-light-emitting materials for high-performance optical pattern encryption. These are based on fluorescent perovskite nanocrystals (NCs) embedded in metal-organic frameworks (MOFs) designed for phosphorescent host-guest interactions. Notably, perovskite-containing MOFs emit a highly efficient blue phosphorescence, and perovskite NCs embedded in the MOFs emit characteristic green or red fluorescence under ultraviolet (UV) irradiation. Such dual-light-emitting MOFs with independent fluorescence and phosphorescence emissions are employed in pochoir pattern encryption, wherein actual information with transient phosphorescence is efficiently concealed behind fake information with fluorescence under UV exposure. Moreover, a 3D cubic skeleton is developed with the dual-light-emitting MOF powder dispersed in 3D-printable polymer filaments for 3D dual-pattern encryption. This article outlines a universal principle for developing MOF-based room-temperature multi-light-emitting materials and a strategy for multidimensional information encryption with enhanced capacity and security. High security solid-state optical encryption is developed, based on fluorescent and phosphorescent dual-light-emitting MOFs in combination with 2D- and 3D-printing technologies.
Keywords
ROOM-TEMPERATURE PHOSPHORESCENCE; TOTAL-ENERGY CALCULATIONS; LUMINESCENT
ISSN
2095-5545
URI
https://pubs.kist.re.kr/handle/201004/113302
DOI
10.1038/s41377-023-01274-4
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE