Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Yu-Jin-
dc.contributor.authorKoo, Jahyeon-
dc.contributor.authorWi, Youngjae-
dc.contributor.authorJang, Junhwa-
dc.contributor.authorOh, Mintaek-
dc.contributor.authorRim, Minwoo-
dc.contributor.authorKo, Hyeyoon-
dc.contributor.authorYoon, Won-Jin-
dc.contributor.authorYou, Nam-Ho-
dc.contributor.authorJeong, Kwang-Un-
dc.date.accessioned2024-01-19T09:01:58Z-
dc.date.available2024-01-19T09:01:58Z-
dc.date.created2023-08-31-
dc.date.issued2023-08-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113407-
dc.description.abstractDisc-shaped building blocks withcolumnar phases have attractedattention for their potential in optical applications, including aretarder. However, to achieve coatable high-performance optical films,it is essential to understand a subtle interaction balance betweenbuilding blocks and relevant self-assembled behaviors during materialprocessing. Herein, we studied a self-assembled nanocolumn evaluationof linear butterfly-shaped dendrons (T-A(3)D) consistingof thiophene-based conjugated core and flexible alkyl dendron. X-raydiffraction provided insight into the unique hexagonal columnar liquidcrystal phase of T-A(3)D, driven by intermolecular hydrogenbonding and coplanarity of the thiophene-based conjugated core. Theformation of a self-assembled nanocolumn with high mobility enabledthe uniaxial orientation of butterfly-shaped T-A(3)D on thealigned rod-shaped nematic reactive mesogens, resulting in a transparentand colorless two-layered negative retarder. The self-assembled nanocolumnconsisting of butterfly-shaped molecule would break a new ground fordeveloping advanced optical thin films.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleCoatable Negative Dispersion Retarder: Kinetically Controlled Self-Assembly Pathway of Butterfly-Shaped Molecular Building Blocks for the Construction of Nanocolumns-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.3c09139-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.15, no.34, pp.41000 - 41006-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume15-
dc.citation.number34-
dc.citation.startPage41000-
dc.citation.endPage41006-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001049426500001-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusDISCOTIC LIQUID-CRYSTALS-
dc.subject.keywordPlusTRANSITION BEHAVIORS-
dc.subject.keywordPlusPHASE-BEHAVIOR-
dc.subject.keywordPlusBIREFRINGENCE-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusPHOTOPOLYMERIZATION-
dc.subject.keywordAuthormolecular design-
dc.subject.keywordAuthorself-assembly-
dc.subject.keywordAuthornanocolumn-
dc.subject.keywordAuthornegative dispersion-
dc.subject.keywordAuthorantireflectivefilm-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE