Full metadata record

DC Field Value Language
dc.contributor.authorKim, Dongha-
dc.contributor.authorJeon, Jingyeong-
dc.contributor.authorPark, Joon Deok-
dc.contributor.authorSun, Xiao-Guang-
dc.contributor.authorGao, Xiang-
dc.contributor.authorLee, Ho Nyung-
dc.contributor.authorMacManus-Driscoll, Judith L.-
dc.contributor.authorKwon, Deok-Hwang-
dc.contributor.authorLee, Shinbuhm-
dc.date.accessioned2024-01-19T09:02:13Z-
dc.date.available2024-01-19T09:02:13Z-
dc.date.created2023-08-17-
dc.date.issued2023-08-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113417-
dc.description.abstractOwingto its pseudocapacitive, unidimensional, rapidion channels,TiO2(B) is a promising material for application to batteryelectrodes. In this study, we align these channels by epitaxiallygrowing TiO2(B) films with the assistance of an isostructuralVO(2)(B) template layer. In a liquid electrolyte, binder-freeTiO(2)(B) epitaxial electrodes exhibit a supercapacity nearthe theoretical value of 335 mA h g(-1) and an excellentcharge-discharge reproducibility for & GE;200 cycles, whichoutperform those of other TiO2(B) nanostructures. For theall-solid-state configuration employing the LiPON solid electrolyte, excellent stability persists. Our findings suggest excellent potentialfor miniaturizing all-solid-state nanobatteries in self-powered integratedcircuits.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleStable Supercapacity of Binder-Free TiO2(B) Epitaxial Electrodes for All-Solid-State Nanobatteries-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.3c00596-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNano Letters, v.23, no.15, pp.6815 - 6822-
dc.citation.titleNano Letters-
dc.citation.volume23-
dc.citation.number15-
dc.citation.startPage6815-
dc.citation.endPage6822-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001037628600001-
dc.identifier.scopusid2-s2.0-85167481586-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusTEMPLATED EPITAXY-
dc.subject.keywordPlusLITHIUM BATTERIES-
dc.subject.keywordPlusINSERTION-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusTHERMODYNAMICS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordAuthorall-solid-state nanobattery-
dc.subject.keywordAuthorTiO2(B)-
dc.subject.keywordAuthorelectrode-
dc.subject.keywordAuthortemplated epitaxy-
dc.subject.keywordAuthorsupercapacity-
dc.subject.keywordAuthorlong retention-
dc.subject.keywordAuthorpseudocapacitiveintercalation-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE