Full metadata record

DC Field Value Language
dc.contributor.authorYun, Hyewon-
dc.contributor.authorChoi, Woong-
dc.contributor.authorShin, Dongwoo-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorHwang, Yun Jeong-
dc.date.accessioned2024-01-19T09:04:43Z-
dc.date.available2024-01-19T09:04:43Z-
dc.date.created2023-07-13-
dc.date.issued2023-07-
dc.identifier.issn2155-5435-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113536-
dc.description.abstractTailoring catalyst performance is especially crucialin a zero-gapmembrane-electrode assembly (MEA) electrolyzers for electrochemicalCO(2) reduction reaction at the industrial scale. However,few studies have directly focused on MEA systems combined with operando techniques when compared to aqueous catholyte-basedflow cells or H-cells. Using the MEA system, this study demonstratesimproved catalytic performance of the AuAg bimetallic catalyst byadjusting the atomic arrangement of the alloy structure and its extrinsicproperties with a carbon support. The AuAg catalyst containing only10 at. % Au and the AgCl domain underwent atomic arrangement via AgClreduction. The catalyst with more oxidative Ag species achieved near-unityCO selectivity (97.3%) and three-fold higher CO partial current comparedto Ag nanoparticles. Operando X-ray absorption analysisof the active AuAg catalyst in the MEA cell demonstrates that theAuAg active site contained more Ag+ and under-coordinatedsurfaces. When the carbon support was properly adjusted, high CO productionactivity is achieved with a CO partial current density and mass activityof 618 mA cm(-2) and 0.824 A mg(-1), respectively, by effectively alleviating the mass transport restriction.AuAg catalysts are competitive with CO2-to-CO catalystsin MEA because their intrinsic and extrinsic properties can be properlycontrolled.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleAtomic Arrangement of AuAg Alloy on Carbon Support Enhances Electrochemical CO2 Reduction in Membrane Electrode Assembly-
dc.typeArticle-
dc.identifier.doi10.1021/acscatal.3c01044-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Catalysis, v.13, no.13, pp.9302 - 9312-
dc.citation.titleACS Catalysis-
dc.citation.volume13-
dc.citation.number13-
dc.citation.startPage9302-
dc.citation.endPage9312-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001018990800001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusGALVANIC REPLACEMENT REACTION-
dc.subject.keywordPlusAG-AU-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusSITU-
dc.subject.keywordAuthorCO2 reduction-
dc.subject.keywordAuthorAuAg alloy-
dc.subject.keywordAuthorCO production-
dc.subject.keywordAuthormembrane electrode assembly-
dc.subject.keywordAuthorgalvanic replacement-
dc.subject.keywordAuthoroperando XAS-
dc.subject.keywordAuthorcarbon support-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE