Full metadata record

DC Field Value Language
dc.contributor.authorKim, Mansu-
dc.contributor.authorKim, Seung-hoon-
dc.contributor.authorPark, Jonghwan-
dc.contributor.authorLee, Seongsoo-
dc.contributor.authorJang, Injoon-
dc.contributor.authorKim, Sohui-
dc.contributor.authorLee, Chang Yeon-
dc.contributor.authorKwon, Oh Joong-
dc.contributor.authorHam, Hyung Chul-
dc.contributor.authorHupp, Joseph T. T.-
dc.contributor.authorJung, Namgee-
dc.contributor.authorYoo, Sung Jong-
dc.contributor.authorWhang, Dongmok-
dc.date.accessioned2024-01-19T09:05:18Z-
dc.date.available2024-01-19T09:05:18Z-
dc.date.created2023-05-04-
dc.date.issued2023-07-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113563-
dc.description.abstractDownsizing a catalyst nanoparticle (NP) to a single atom (SA) has proven to be highly effective in increasing catalytic activity and decreasing the amount of catalyst required for various electrochemical reactions. However, insufficient stability of the single-atom site catalysts (SACs) is still a significant challenge for their practical application. Here, SACs firmly bound to stable metal oxide NPs are proposed to dramatically increase the electrochemical activity and stability of SA-based catalysts for hydrogen evolution reaction (HER). Starting from a Ru-infiltrated, Zr-based metal-organic framework (MOF), the tetragonal zirconium oxide (ZrO2-x) NPs-embedded carbon matrix is fabricated as support through facile pyrolysis. Simultaneously, Ru SAs as active sites are well dispersed on the surface of ZrO2-x NPs due to the generation of oxygen vacancies in the tetragonal ZrO2-x. The Ru-ZrO2-x SAC exhibits a 4?5 times higher mass activity than commercial Pt and Ru catalysts and superior durability due to strong metal-support interaction (SMSI) between Ru atoms and ZrO2-x substrate.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleReconstructing Oxygen-Deficient Zirconia with Ruthenium Catalyst on Atomic-Scale Interfaces toward Hydrogen Production-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202300673-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Functional Materials, v.33, no.28-
dc.citation.titleAdvanced Functional Materials-
dc.citation.volume33-
dc.citation.number28-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000972700200001-
dc.identifier.scopusid2-s2.0-85152916895-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusX-RAY-ABSORPTION-
dc.subject.keywordPlusSINGLE-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusACID-
dc.subject.keywordAuthoroxygen-deficient zirconia-
dc.subject.keywordAuthorreconstruction engineering-
dc.subject.keywordAuthorRu catalysts-
dc.subject.keywordAuthorsingle-atom sites catalysts-
dc.subject.keywordAuthorhydrogen evolution reaction-
dc.subject.keywordAuthormetal-organic frameworks-
dc.subject.keywordAuthormetal-support interactions-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE