Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Baeck B.-
dc.contributor.authorJo, Jae Hyeon-
dc.contributor.authorYoo, Young Sung-
dc.contributor.authorJeon, Sang-Yun-
dc.contributor.authorLee, Taehee-
dc.contributor.authorChoi, Yeong-Jun-
dc.contributor.authorChung, Dong Young-
dc.contributor.authorLee, Eung-Jun-
dc.contributor.authorYoo, Sung Jong-
dc.date.accessioned2024-01-19T09:31:22Z-
dc.date.available2024-01-19T09:31:22Z-
dc.date.created2023-06-15-
dc.date.issued2023-06-
dc.identifier.issn2213-1388-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113675-
dc.description.abstractHydrogen has emerged as a promising energy carrier to mitigate the imbalance between renewable energy supply and demand. Developing high-performance, highly durable, low-cost electrolysis systems is essential for sustainable hydrogen production with reduced installation and operational costs. Practical accelerated stress test protocols are crucial to assess the performance durability of electrolyzers, which need a lifespan of over a decade. Additionally, investigating performance durability under diverse operating conditions is necessary. This research employs an accelerated stress test protocol, compressing 24 h of solar power generation into a minute and operating continuously for five days. The impact of anode structure on performance durability is analyzed using the accelerated stress test protocol, revealing performance degradation under the rainy-day protocol. Finally, better dispersibility led to lower current density reduction (0.38 A/cm2) in rainy-day protocol, compared to poorly dispersed water-based electrode's reduction (0.57 A/cm2), indicating improved durability.-
dc.languageEnglish-
dc.publisherElsevier Limited-
dc.titleAccelerated stress test of polymer electrolyte membrane water electrolyzer via solar power generation condition-
dc.typeArticle-
dc.identifier.doi10.1016/j.seta.2023.103238-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSustainable Energy Technologies and Assessments, v.57-
dc.citation.titleSustainable Energy Technologies and Assessments-
dc.citation.volume57-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000989656800001-
dc.identifier.scopusid2-s2.0-85153486585-
dc.relation.journalWebOfScienceCategoryGreen & Sustainable Science & Technology-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusFUEL-CELLS-
dc.subject.keywordPlusPEM-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusDURABILITY-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordPlusIMPACT-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusINSTABILITY-
dc.subject.keywordAuthorHydrogen-
dc.subject.keywordAuthorWater electrolyzer-
dc.subject.keywordAuthorPolymer electrolyte membrane-
dc.subject.keywordAuthorSolar power generation-
dc.subject.keywordAuthorAccelerated stress test-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE