Full metadata record

DC Field Value Language
dc.contributor.authorLee, Yun-Sik-
dc.contributor.authorPark, Bum Chul-
dc.contributor.authorLee, Dae Beom-
dc.contributor.authorMin, Hyun-Gi-
dc.contributor.authorKim, Min-Suk-
dc.contributor.authorKim, Sung-Chul-
dc.contributor.authorWon, Sung Ok-
dc.contributor.authorWee, June-
dc.contributor.authorChae, Eunji-
dc.contributor.authorSim, Cheolho-
dc.contributor.authorKim, Youngeun-
dc.contributor.authorKim, Jeong-Gyu-
dc.contributor.authorKim, Young Keun-
dc.contributor.authorCho, Kijong-
dc.date.accessioned2024-01-19T09:32:40Z-
dc.date.available2024-01-19T09:32:40Z-
dc.date.created2023-06-29-
dc.date.issued2023-05-
dc.identifier.issn0160-4120-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113739-
dc.description.abstractArsenic (As)-contaminated soil inevitably exists in nature and has become a global challenge for a sustainable future. Current processes for As capture using natural and structurally engineered nanomaterials are neither scientifically nor economically viable. Here, we established a feasible strategy to enhance As-capture efficiency and ecosystem health by structurally reorganizing iron oxyhydroxide, a natural As stabilizer. We propose crystallization to reorganize FeOOH-acetate nanoplatelets (r-FAN), which is universal for either scalable chemical synthesis or reproduction from natural iron oxyhydroxide phases. The r-FAN with wide interlayer spacing immobilizes As species through a synergistic mechanism of electrostatic intercalation and surface chemisorption. The r-FAN rehabilitates the ecological fitness of As-contaminated artificial and mine soils, as manifested by the integrated bioassay results of collembolan and plants. Our findings will serve as a cornerstone for crystallization-based material engineering for sustainable environmental applications and for understanding the interactions between soil, nanoparticles, and contaminants.-
dc.languageEnglish-
dc.publisherElsevier Ltd.-
dc.titleCrystallization-based upcycling of iron oxyhydroxide for efficient arsenic capture in contaminated soils-
dc.typeArticle-
dc.identifier.doi10.1016/j.envint.2023.107963-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEnvironment International, v.175-
dc.citation.titleEnvironment International-
dc.citation.volume175-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001007503900001-
dc.identifier.scopusid2-s2.0-85159181272-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.type.docTypeArticle-
dc.subject.keywordPlusCOLLEMBOLA-
dc.subject.keywordAuthorIron oxyhydroxide-
dc.subject.keywordAuthorNanomaterial-
dc.subject.keywordAuthorSustainable Crystallization-
dc.subject.keywordAuthorArsenic capture-
dc.subject.keywordAuthorSoil amendments-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE