Full metadata record

DC Field Value Language
dc.contributor.authorNam, Seungjin-
dc.contributor.authorKim, Sang Jun-
dc.contributor.authorYoon, Kook Noh-
dc.contributor.authorKim, Moon J.-
dc.contributor.authorQuevedo-Lopez, Manuel-
dc.contributor.authorHwang, Jun Yeon-
dc.contributor.authorPark, Eun Soo-
dc.contributor.authorChoi, Hyunjoo-
dc.date.accessioned2024-01-19T10:32:46Z-
dc.date.available2024-01-19T10:32:46Z-
dc.date.created2022-12-22-
dc.date.issued2022-12-
dc.identifier.issn0264-1275-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114229-
dc.description.abstractTo develop alloys with high strength and reasonable ductility, CoCrFeNi-based metastable complex -concentrated alloys were designed using composition-property contour maps. The map was constructed by exploring the phase stability and mechanical behaviors of a series of CoCrFeNi alloy thin films synthe-sized via solid-state alloying of multilayer thin films. The concentrations of Co and Ni were key to activate metastable deformation behaviors by reducing the stacking fault energy of alloys and improve solid -solution strengthening, as expected from the atomic-level complexity related to the electronegativity dif-ference. By optimizing the Co and Ni concentrations based on the composition-phase/mechanical prop-erty contour maps, we activated the combined deformation behavior of mechanical twinning and phase transformation. This resulted in a Co33Cr25Fe25Ni17 metastable complex-concentrated alloy with excel-lent tensile properties-yield strength of 234 MPa, ultimate tensile strength of 720 MPa, and elongation to failure of 80%. The proposed approach provides a useful guideline for the design of complex -concentrated alloys with customized properties through property predictive control.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleDesign of metastable complex-concentrated alloys through composition tailoring-
dc.typeArticle-
dc.identifier.doi10.1016/j.matdes.2022.111391-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMaterials & Design, v.224-
dc.citation.titleMaterials & Design-
dc.citation.volume224-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000891745700002-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-ENTROPY ALLOYS-
dc.subject.keywordPlusSTACKING-FAULT ENERGIES-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusDEFORMATION-BEHAVIOR-
dc.subject.keywordPlusPHASE-FORMATION-
dc.subject.keywordPlusGRAIN-SIZE-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusTRANSFORMATION-
dc.subject.keywordPlusTWIP-
dc.subject.keywordPlusMN-
dc.subject.keywordAuthorWe proposed alloy exploration-
dc.subject.keywordAuthorAlloy design-
dc.subject.keywordAuthorMultilayer thin film-
dc.subject.keywordAuthorSolid-state alloying-
dc.subject.keywordAuthorComposition -dependent properties-
dc.subject.keywordAuthorMetastable complex -concentrated alloy-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE