Electronic structure modulation of MnO2 by Ru and F incorporation for efficient proton exchange membrane water electrolysis

Authors
Kim, DongwonVoronova, AnastasiiaKim, SolKim, Jin YoungPark, Hee-YoungJang, Jong HyunSeo, Bora
Issue Date
2022-10
Publisher
Royal Society of Chemistry
Citation
Journal of Materials Chemistry A, v.10, no.41, pp.21985 - 21994
Abstract
Hydrogen is a sustainable energy carrier that can be produced via water electrolysis (WE). However, the use of precious metals as anode catalysts increases the cell stack price and hinders the practical implementation. Therefore, MnO2 has been introduced as a catalytic support material to maximize the utilization of precious metals at a given loading. However, their oxygen evolution reaction (OER) activities remain unsatisfactory owing to lack of precise structural control. Here, Ru and F incorporation successfully modulates the electronic structure of MnO2 for application to proton exchange membrane water electrolysis (PEMWE). Optimization of the synthesis conditions produced a (Mn0.94Ru0.06)O-2:2.5F catalyst, which showed a high mass activity. X-ray spectroscopic and electrochemical characterizations revealed that the OER activity increased with the Mn3+/Mn4+ ratio and oxygen vacancies. In addition, practical applicability was demonstrated by applying (Mn0.94Ru0.06)O-2:2.5F as the anode catalyst in a PEMWE cell.
Keywords
OXYGEN EVOLUTION REACTION; MANGANESE OXIDES; OXIDATION; ELECTROCATALYSTS; PERFORMANCE; ALPHA-MNO2; CATALYSTS; ANODES
ISSN
2050-7488
URI
https://pubs.kist.re.kr/handle/201004/114485
DOI
10.1039/d2ta06066c
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE