Large emergent optoelectronic enhancement in molecularly cross-linked gold nanoparticle nanosheets

Authors
Gravelsins, StevenPark, Myung JinNiewczas, MarekHyeong, Seok-KiLee, Seoung-KiAhmed, AftabDhirani, Al-Amin
Issue Date
2022-08
Publisher
NATURE PUBLISHING GROUP
Citation
Communications Chemistry, v.5, no.1
Abstract
A central goal in molecular electronics and optoelectronics is to translate tailorable molecular properties to larger materials and to the device level. Here, we present a method to fabricate molecularly cross-linked, self-assembled 2D nanoparticle sheets (X-NS). Our method extends a Langmuir approach of self-assembling gold nanoparticle (NP) arrays at an air-water interface by replacing the liquid sub-phase to an organic solvent to enable cross-linking with organic molecules, and then draining the sub-phase to deposit films. Remarkably, X-NS comprising conjugated oligophenylene dithiol cross-linkers (HS-(C6H4)(n)-SH, 1 <= n <= 3) exhibit increasing conductance with molecule length, similar to 6 orders of magnitude enhancement in UV-Vis extinction coefficients, and photoconductivity with molecule vs. NP contributions varying depending on the excitation wavelength. Finite difference time domain (FDTD) analyses and control measurements indicate that these effects can be modeled provided the local complex dielectric constant is strongly modified upon cross-linking. This suggests quantum hybridization at a molecule-band (q-MB) level. Given the vast number of molecules and nano-building blocks available, X-NS have potential to significantly increase the range of available 2D nanosheets and associated quantum properties.
Keywords
LARGE-AREA; HIGH-YIELD; JUNCTIONS; MONOLAYER; ELECTRONICS; TRANSPORT; FILMS; PHOTOCONDUCTANCE; CONDUCTANCE; CONTACTS
ISSN
2399-3669
URI
https://pubs.kist.re.kr/handle/201004/114793
DOI
10.1038/s42004-022-00723-2
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE