Full metadata record

DC Field Value Language
dc.contributor.authorPark, Mi Young-
dc.contributor.author박선영-
dc.contributor.authorSeo, Haewon-
dc.contributor.authorJung, Jin-Mook-
dc.contributor.authorHwang, Hyo Ki-
dc.contributor.authorHong, Jongsup-
dc.contributor.authorPark, Jun-Young-
dc.contributor.authorLee, Insung-
dc.contributor.authorYoon, Kyung Joong-
dc.date.accessioned2024-01-19T12:01:24Z-
dc.date.available2024-01-19T12:01:24Z-
dc.date.created2022-05-27-
dc.date.issued2022-06-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115154-
dc.description.abstractSolid oxide fuel cells (SOFCs) currently face great opportunities in various applications. One of the critical issues for their commercialization involves cathode current collection in full-scale stacks because forming a reliable electronic conduction path in high-temperature oxidizing environments is extremely difficult. Herein, we present a Cu-Mn foam as a highly efficient, reliable, and cost-competitive cathode current collector. The Cu-Mn foam exists as a metallic alloy in the as-fabricated state, which offers adequate mechanical properties for stack assembly. Subsequently, it transforms into a conductive spinel oxide during high-temperature operation, providing the desired electrical and structural characteristics. Resistance measurements at 700 degrees C verify that the Cu-Mn foam was stable for 27 000 h. In unit cell testing, the foam performs comparably to a noble metal (Pt) mesh, and when the cell is enlarged from 4 to 100 cm(2), no performance loss occurs. Furthermore, it is successfully incorporated into a 1 kW-class full-size stack, where it demonstrates excellent durability in accelerated tests involving thermal and current cycling for 3684 h. This developed Cu-Mn foam can overcome a crucial limitation in the scale-up of SOFC technology and can also be utilized to construct high-temperature electronic conduction paths in various applications.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleConstruction of high-temperature electronic conduction paths for the scale-up of solid oxide fuel cell technology-
dc.typeArticle-
dc.identifier.doi10.1039/d2ta02468c-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A, v.10, no.22, pp.11917 - 11925-
dc.citation.titleJournal of Materials Chemistry A-
dc.citation.volume10-
dc.citation.number22-
dc.citation.startPage11917-
dc.citation.endPage11925-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000793979300001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusCATHODE CONTACT MATERIALS-
dc.subject.keywordPlusCOPPER MANGANESE ALLOYS-
dc.subject.keywordPlusINTERMEDIATE-TEMPERATURE-
dc.subject.keywordPlusCOMPOSITE CATHODE-
dc.subject.keywordPlusPERFORMANCE EVALUATION-
dc.subject.keywordPlusFE-22CR MESH-
dc.subject.keywordPlusMETAL FOAM-
dc.subject.keywordPlusINTERCONNECT-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusSPINELS-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE