Full metadata record

DC Field Value Language
dc.contributor.authorKim, Keon-Han-
dc.contributor.authorKim, Se-Jun-
dc.contributor.authorChoi, Won Ho-
dc.contributor.authorLee, Heebin-
dc.contributor.authorMoon, Byeong Cheul-
dc.contributor.authorKim, Gi Hwan-
dc.contributor.authorChoi, Jae Won-
dc.contributor.authorPark, Dong Gyu-
dc.contributor.authorChoi, Jong Hui-
dc.contributor.authorKim, Hyungjun-
dc.contributor.authorKang, Jeung Ku-
dc.date.accessioned2024-01-19T12:03:22Z-
dc.date.available2024-01-19T12:03:22Z-
dc.date.created2022-04-05-
dc.date.issued2022-05-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115254-
dc.description.abstractThe search for photocatalysts allowing the highly active, selective, and stable conversion of molecular oxygen into hydrogen peroxide is of worldwide interest. Here, the authors report the efficient conversion of O-2 into H2O2 with approximate to 100% selectivity and stable cycle stability by a triphasic metal oxide photocatalyst with a cobalt hydroxide carbonate nanosheet phase for water oxidation as well as iron oxide and titanium oxide phases of a core-shell morphology for charge transfer and oxygen reduction, denoted as CFT. The different surface energies of 0.78 (anatase) and 0.93 J m(-2) (rutile) for titanium oxide and 1.39 J m(-2) for iron oxide result in a core-shell morphology. The band gaps for iron oxide (2.02 eV), titanium oxide (approximate to 3 eV), and cobalt hydroxide carbonate (3.80 eV) sites reveal that the CFT photocatalyst allows visible-to-UV light absorption. The O-18(2) isotope-labeling experiments prove that the core-shell structure promotes hole transfer toward the water oxidation site. Additionally, the hole-induced H2O2 decomposition at the oxygen reduction site is efficiently hindered. Moreover, the photogenerated electrons transfer toward the oxygen reduction site to produce H2O2 from O-2 with approximate to 10-fold higher activity than those by conventional single- or dual-phase photocatalysts, while giving robust cycle stability.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleTriphasic Metal Oxide Photocatalyst for Reaction Site-Specific Production of Hydrogen Peroxide from Oxygen Reduction and Water Oxidation-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.202104052-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Energy Materials, v.12, no.18-
dc.citation.titleAdvanced Energy Materials-
dc.citation.volume12-
dc.citation.number18-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000760881500001-
dc.identifier.scopusid2-s2.0-85125268917-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusGRAPHITIC CARBON NITRIDE-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusH2O2-
dc.subject.keywordPlusDRIVEN-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordAuthortriphasic metal-oxide photocatalysts-
dc.subject.keywordAuthorwater oxidation-
dc.subject.keywordAuthorcharge transfer-
dc.subject.keywordAuthorDFT simulations-
dc.subject.keywordAuthorH-
dc.subject.keywordAuthorO-2-
dc.subject.keywordAuthor(2) production-
dc.subject.keywordAuthorin-situ experimental analysis-
dc.subject.keywordAuthoroxygen reduction-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE