Vapor-Mediated Infiltration of Nanocatalysts for Low-Temperature Solid Oxide Fuel Cells Using Electrosprayed Dendrites

Authors
Shin, S.S.Kim, J.H.Jeong, H.Park, M.Y.Yoon, K.J.Son, J.-W.Choi, M.Kim, H.
Issue Date
2021-12-22
Publisher
American Chemical Society
Citation
Nano Letters, v.21, no.24, pp.10186 - 10192
Abstract
Electrode architecturing for fast electrochemical reaction is essential for achieving high-performance of low-temperature solid oxide fuel cells (LT-SOFCs). However, the conventional droplet infiltration technique still has limitations in terms of the applicability and scalability of nanocatalyst implementation. Here, we develop a novel two-step precursor infiltration process and fabricate high-performance LT-SOFCs with homogeneous and robust nanocatalysts. This novel infiltration process is designed based on the principle of a reversible sol-gel transition where the gelated precursor dendrites are uniformly deposited onto the electrode via controlled nanoscale electrospraying process then resolubilized and infiltrated into the porous electrode structure through subsequent humidity control. Our infiltration technique reduces the cathodic polarization resistance by 18% compared to conventional processes, thereby achieving an enhanced peak power density of 0.976 W cm-2 at 650 °C. These results, which provide various degrees of freedom for forming nanocatalysts, exhibit an advancement in LT-SOFC technology. ? 2021 American Chemical Society.
Keywords
OXYGEN REDUCTION ACTIVITY; SURFACE MODIFICATION; PERFORMANCE; CATHODE; DEPOSITION; NANOPARTICLES; ELECTRODES; NANOSCALE; Electrospray; Infiltration; Nanocatalysts; Sol-gel reversible process; Solid oxide fuel cells
ISSN
1530-6984
URI
https://pubs.kist.re.kr/handle/201004/115930
DOI
10.1021/acs.nanolett.1c02872
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE