Highly sustainable polyphenylene sulfide membrane of tailored porous architecture for high-performance lithium-ion battery applications

Authors
Kim, M.Hong, S.Y.Bang, J.Lee, S.-S.
Issue Date
2021-12
Publisher
Elsevier Ltd
Citation
Materials Today Advances, v.12
Abstract
Mechanically robust and chemically stable polyphenylene sulfide (PPS) membrane of efficient porous architecture as well as high porosity has been prepared from a PPS/SiO2 composite including homogeneous distribution of SiO2 nanoparticles, and its applicability as a separator in lithium-ion battery (LIB) was extensively examined in terms of sustainability of electrochemical behaviors. To improve distribution of SiO2 nanoparticles for the incompatible PPS/SiO2 mixture, prerequisite for the efficient porous architecture, interface modulation by plasma-assisted mechanochemical (MP) treatment has been performed, and the MP-treated PPS/SiO2 composite exhibited perfectly homogeneous distribution of SiO2 nanoparticles, finally resulting in porous PPS membrane including a large number of pores with nearly monodisperse pore diameter after removal of SiO2 phase. Alongside the well-developed porous architecture, the porous PPS membrane also deployed notably improved wetting to electrolyte imparted by the MP-based interface modulation, which gave rise to the complete suppression of disastrous build-up and intrusion of lithium dendrite on a separator as well as the electrochemical performances superior to those of the existing PP separator such as the highly sustainable cyclic charging/discharging behavior. Furthermore, it was notable that the PPS membrane exhibited outstanding mechanical stability especially at high temperature even after a large number of pores were developed inside, which has been generic from the nature of PPS. Conclusively, it could be stated that the porous PPS separator is a promising candidate fulfilling the performance requirements for the high-performance LIB. ? 2021 The Authors
Keywords
Lithium-ion battery; Mecahnochemical treatment; Polyphenylene sulfide membrane; Porogen; Porous separator
ISSN
2590-0498
URI
https://pubs.kist.re.kr/handle/201004/116001
DOI
10.1016/j.mtadv.2021.100186
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE