Full metadata record

DC Field Value Language
dc.contributor.authorWoo, JunHyuk-
dc.contributor.authorKim, Soon Ho-
dc.contributor.authorHan, Kyungreem-
dc.contributor.authorChoi, MooYoung-
dc.date.accessioned2024-01-19T13:30:53Z-
dc.date.available2024-01-19T13:30:53Z-
dc.date.created2022-01-10-
dc.date.issued2021-11-05-
dc.identifier.issn1751-8113-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116142-
dc.description.abstractThe integrate-and-fire (IF) model is the most widely used simple spiking neuron model in neuromorphic computing as well as in artificial neural network algorithms. Here, we characterize the dynamics and information processing of IF models using computer simulations and information-theoretic approaches. Neural dynamics is analysed by means of the time evolution of axonal spikes and the phase-plane portrait, and the coding efficiency of a neuron is estimated by the ratio of mutual information of input and output spikes for the binary hidden neural state. The exponential IF model exhibits higher similarity to the biophysical model in both neural dynamics and coding, compared to other IF type models. Electronic circuit simulations based on the simulation programme with integrated circuit emphasis reveal the nonlinear current-voltage characteristics of the IF neuron models and criticalities in the neural networks. Relevant information-theoretic measures indicate that the computational capabilities of neuromorphic devices largely depend on the neuron models. Such an approach combined with the analysis of neural dynamics provides a useful tool to investigate underlying dynamics of mathematical neuron models; it is applicable to the design and evaluation of neuromorphic models.-
dc.languageEnglish-
dc.publisherIOP Publishing Ltd-
dc.subjectMEAN-FIELD-THEORY-
dc.subjectCORTICAL NETWORKS-
dc.subjectNOISE-
dc.subjectARCHITECTURE-
dc.subjectCOMPUTATION-
dc.subjectCRITICALITY-
dc.subjectAVALANCHES-
dc.subjectMEMORY-
dc.subjectRANGE-
dc.titleCharacterization of dynamics and information processing of integrate-and-fire neuron models-
dc.typeArticle-
dc.identifier.doi10.1088/1751-8121/ac2a54-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, v.54, no.44-
dc.citation.titleJOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL-
dc.citation.volume54-
dc.citation.number44-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000707216000001-
dc.identifier.scopusid2-s2.0-85118711869-
dc.relation.journalWebOfScienceCategoryPhysics, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Mathematical-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMEAN-FIELD-THEORY-
dc.subject.keywordPlusCORTICAL NETWORKS-
dc.subject.keywordPlusNOISE-
dc.subject.keywordPlusARCHITECTURE-
dc.subject.keywordPlusCOMPUTATION-
dc.subject.keywordPlusCRITICALITY-
dc.subject.keywordPlusAVALANCHES-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordPlusRANGE-
dc.subject.keywordAuthorintegrate-and-fire (IF) model-
dc.subject.keywordAuthorbiophysical neuron model-
dc.subject.keywordAuthorinformation theory-
dc.subject.keywordAuthorsimulation program with integrated circuit emphasis (SPICE)-
dc.subject.keywordAuthorneuromorphic computing-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE