Full metadata record

DC Field Value Language
dc.contributor.authorJeong, Ji-Hyeok-
dc.contributor.authorChoi, Jun-Hyuk-
dc.contributor.authorKim, Keun-Tae-
dc.contributor.authorLee, Song-Joo-
dc.contributor.authorKim, Dong-Joo-
dc.contributor.authorKim, Hyung-Min-
dc.date.accessioned2024-01-19T13:33:34Z-
dc.date.available2024-01-19T13:33:34Z-
dc.date.created2022-01-10-
dc.date.issued2021-10-
dc.identifier.issn1424-8220-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116311-
dc.description.abstractMotor imagery (MI) brain-computer interfaces (BCIs) have been used for a wide variety of applications due to their intuitive matching between the user&apos;s intentions and the performance of tasks. Applying dry electroencephalography (EEG) electrodes to MI BCI applications can resolve many constraints and achieve practicality. In this study, we propose a multi-domain convolutional neural networks (MD-CNN) model that learns subject-specific and electrode-dependent EEG features using a multi-domain structure to improve the classification accuracy of dry electrode MI BCIs. The proposed MD-CNN model is composed of learning layers for three domain representations (time, spatial, and phase). We first evaluated the proposed MD-CNN model using a public dataset to confirm 78.96% classification accuracy for multi-class classification (chance level accuracy: 30%). After that, 10 healthy subjects participated and performed three classes of MI tasks related to lower-limb movement (gait, sitting down, and resting) over two sessions (dry and wet electrodes). Consequently, the proposed MD-CNN model achieved the highest classification accuracy (dry: 58.44%; wet: 58.66%; chance level accuracy: 43.33%) with a three-class classifier and the lowest difference in accuracy between the two electrode types (0.22%, d = 0.0292) compared with the conventional classifiers (FBCSP, EEGNet, ShallowConvNet, and DeepConvNet) that used only a single domain. We expect that the proposed MD-CNN model could be applied for developing robust MI BCI systems with dry electrodes.</p>-
dc.languageEnglish-
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)-
dc.titleMulti-Domain Convolutional Neural Networks for Lower-Limb Motor Imagery Using Dry vs. Wet Electrodes-
dc.typeArticle-
dc.identifier.doi10.3390/s21196672-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSensors, v.21, no.19-
dc.citation.titleSensors-
dc.citation.volume21-
dc.citation.number19-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000709535800001-
dc.identifier.scopusid2-s2.0-85116433003-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.type.docTypeArticle-
dc.subject.keywordPlusBRAIN-COMPUTER INTERFACE-
dc.subject.keywordPlusEEG-
dc.subject.keywordAuthorbrain-computer interfaces-
dc.subject.keywordAuthorelectroencephalography-
dc.subject.keywordAuthormotor imagery-
dc.subject.keywordAuthorlower limb-
dc.subject.keywordAuthorelectrodes-
dc.subject.keywordAuthorneural networks-
dc.subject.keywordAuthormultilayer neural network-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE