Full metadata record

DC Field Value Language
dc.contributor.authorSeo, Tae Hoon-
dc.contributor.authorLee, WonKi-
dc.contributor.authorLee, Kyu Seung-
dc.contributor.authorHwang, Jun Yeon-
dc.contributor.authorSon, Dong Ick-
dc.contributor.authorAhn, Seokhoon-
dc.contributor.authorCho, Hyunjin-
dc.contributor.authorKim, Myung Jong-
dc.date.accessioned2024-01-19T14:01:06Z-
dc.date.available2024-01-19T14:01:06Z-
dc.date.created2022-01-10-
dc.date.issued2021-09-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116509-
dc.description.abstractArranging carbon, boron, and nitrogen atoms in a sp(2) network can give rise to tunable electronic properties from insulators (h-BN) to metals (graphene). For semiconductor applications, the construction of a ternary structure (h-BxCyNz) is highly desirable, but its uniform and large-area synthesis has remained a great challenge. This challenge has been attempted by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine where boron, carbon, and nitrogen atoms are covalently bonded, onto Ni catalysts in conjunction with the quenching method after the synthesis. The atomic structure closely resembles h-BC2N as revealed by XPS (B:C:N similar to 1:1.8:1) and nanometer resolution EELS mapping, and the photoluminescence and electroluminescence observed from the h-BC2N film were in agreement, proving its well-established bandgap of 2.15 eV. As a practical application, the utilization of h-BC2N film for 2D light emitting diodes was demonstrated. Though films might have impurities such as small h-BN fragments and h-BxCyNz other than h-BC2N phase, we believe that this work provide a starting point of controlling the ternary BCN compounds that retain sp(2) hybridized chemical bonds. (C) 2021 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleDominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization-
dc.typeArticle-
dc.identifier.doi10.1016/j.carbon.2021.06.080-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCARBON, v.182, pp.791 - 798-
dc.citation.titleCARBON-
dc.citation.volume182-
dc.citation.startPage791-
dc.citation.endPage798-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000684563200012-
dc.identifier.scopusid2-s2.0-85109089138-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusBORON-NITRIDE-
dc.subject.keywordPlusELECTRONIC-STRUCTURE-
dc.subject.keywordPlusATOMIC LAYERS-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusBANDGAP-
dc.subject.keywordPlusCARBON-
dc.subject.keywordAuthorh-BC2N-
dc.subject.keywordAuthorBandgap-
dc.subject.keywordAuthorChemical vapor deposition-
dc.subject.keywordAuthorOptoelectronic application-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE