Full metadata record

DC Field Value Language
dc.contributor.authorLee, Dong geun-
dc.contributor.authorJung, W.H.-
dc.contributor.authorLee, S.-
dc.contributor.authorYu, Eui Sang-
dc.contributor.authorLee, Taik jin-
dc.contributor.authorKIM, JAE HUN-
dc.contributor.authorHyun, Seok Song-
dc.contributor.authorLEE, KWAN HYI-
dc.contributor.authorLee, Seok-
dc.contributor.authorHan, S.-K.-
dc.contributor.authorChoi, M.C.-
dc.contributor.authorAhn, D.J.-
dc.contributor.authorRyu, Yong Sang-
dc.contributor.authorKim, Chulki-
dc.date.accessioned2024-01-19T14:33:07Z-
dc.date.available2024-01-19T14:33:07Z-
dc.date.created2021-09-02-
dc.date.issued2021-06-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116956-
dc.description.abstractDespite technological advances in biomolecule detections, evaluation of molecular interactions via potentiometric devices under ion-enriched solutions has remained a long-standing problem. To avoid severe performance degradation of bioelectronics by ionic screening effects, we cover probe surfaces of field effect transistors with a single film of the supported lipid bilayer, and realize respectable potentiometric signals from receptor?ligand bindings irrespective of ionic strength of bulky solutions by placing an ion-free water layer underneath the supported lipid bilayer. High-energy X-ray reflectometry together with the circuit analysis and molecular dynamics simulation discovered biochemical findings that effective electrical signals dominantly originated from the sub-nanoscale conformational change of lipids in the course of receptor?ligand bindings. Beyond thorough analysis on the underlying mechanism at the molecular level, the proposed supported lipid bilayer-field effect transistor platform ensures the world-record level of sensitivity in molecular detection with excellent reproducibility regardless of molecular charges and environmental ionic conditions. ? 2021, The Author(s).-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleIonic contrast across a lipid membrane for Debye length extension: towards an ultimate bioelectronic transducer-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-021-24122-8-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.12, no.1-
dc.citation.titleNature Communications-
dc.citation.volume12-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000665038900009-
dc.identifier.scopusid2-s2.0-85108080625-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTRICAL DETECTION-
dc.subject.keywordPlusMOLECULAR-DYNAMICS-
dc.subject.keywordPlusDNA HYBRIDIZATION-
dc.subject.keywordPlusFIELD-
dc.subject.keywordPlusSENSORS-
dc.subject.keywordPlusAVIDIN-
dc.subject.keywordPlusTRANSISTORS-
dc.subject.keywordPlusDISEASE-
dc.subject.keywordPlusBINDING-
dc.subject.keywordAuthorbioelectronic transducer-
dc.subject.keywordAuthorlipid membrane-
dc.subject.keywordAuthorDebye length-
dc.subject.keywordAuthormolecular detection-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE