Optimization of 3-DoF Manipulators' Parasitic Motion with the Instantaneous Restriction Space-Based Analytic Coupling Relation

Authors
Nigatu, HassenKim, Doik
Issue Date
2021-05
Publisher
MDPI
Citation
APPLIED SCIENCES-BASEL, v.11, no.10
Abstract
Featured Application Velocity-level parasitic motion optimization is performed based on the instantaneous restriction space analysis. The manipulator whose parasitic motion is successfully eliminated from the workspace has tremendous benefit for robotic assistive surgery, precision machining devices, and other applications that are critical for manipulators with parasitic motion. This paper presents a velocity-level approach to optimizing the parasitic motion of 3-degrees of freedom (DoFs) parallel manipulators. To achieve this objective, we first systematically derive an analytical velocity-level parasitic motion equation as a primary step for the optimization. The paper utilizes an analytic structural constraint equation that describes the manipulator's restriction space to formulate the parasitic motion equation via the task variable coupling relation. Then, the relevant geometric variables are identified from the analytic coupling equation. The Quasi-Newton method is used for the direction-specific minimization, i.e., optimizing either the x-axis or y-axis parasitic motion. The pattern-search algorithm is applied to optimize all parasitic terms from the workspace. The proposed approach equivalently describes the 3-PhRS, 3-PvRS, 3RPS manipulators. Moreover, other manipulators within a similar category can be equivalently expressed by the proposed method. Finally, the paper presents the resulting optimum configurations and numerical simulations to demonstrate the approach.
Keywords
PARALLEL MECHANISM; KINEMATIC ANALYSIS; DESIGN; parallel manipulator; IMS; IRS; screw theory; constraint analysis; parasitic motion; optimization
ISSN
2076-3417
URI
https://pubs.kist.re.kr/handle/201004/117022
DOI
10.3390/app11104690
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE