Full metadata record

DC Field Value Language
dc.contributor.authorKwak, In Hye-
dc.contributor.authorDebela, Tekalign Terfa-
dc.contributor.authorKwon, Ik Seon-
dc.contributor.authorSeo, Jaemin-
dc.contributor.authorYoo, Seung Jo-
dc.contributor.authorKim, Jin-Gyu-
dc.contributor.authorAhn, Jae-Pyoung-
dc.contributor.authorPark, Jeunghee-
dc.contributor.authorKang, Hong Seok-
dc.date.accessioned2024-01-19T16:01:31Z-
dc.date.available2024-01-19T16:01:31Z-
dc.date.created2022-01-25-
dc.date.issued2020-12-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117715-
dc.description.abstractTwo-dimensional transition metal dichalcogenides have recently attracted much attention as excellent electrocatalysts for the hydrogen evolution reaction (HER). Herein, Re1-xMoxS2 alloy nanosheets in the entire composition range were synthesized using a hydrothermal reaction. High-resolution scanning transmission electron microscopy revealed anisotropic atomic distribution of the alloy phase, in which the Re and Mo atoms tend to segregate along a crystallographic axis. The phase transition occurs from the triclinic phase (1T '') ReS2 to the monoclinic phase (1T ') MoS2 at 50% Mo. Re0.5Mo0.5S2 exhibited the highest electrocatalytic HER activity, which was characterized by a current density of 10 mA cm(-2) at an overpotential of 98 mV (vs. RHE) and a Tafel slope of 54 mV dec(-1) in 0.5 M H2SO4. Extensive calculations using spin-polarized density functional theory showed that the most energetically stable configuration consists of separated MoS2 and ReS2 domains along the b axis, and the 1T '' -> 1T ' phase transition at 50% Mo, which agrees with the experimental results. The Gibbs free energy along the HER pathway indicates that the best performance at Mo 50% is due to the formation of S-H or Mo-H (at S vacancies) on the MoS2 domain.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleAnisotropic alloying of Re1-xMoxS2 nanosheets to boost the electrochemical hydrogen evolution reaction-
dc.typeArticle-
dc.identifier.doi10.1039/d0ta09299a-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.8, no.47, pp.25131 - 25141-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume8-
dc.citation.number47-
dc.citation.startPage25131-
dc.citation.endPage25141-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000599249300021-
dc.identifier.scopusid2-s2.0-85098460619-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusACTIVE EDGE SITES-
dc.subject.keywordPlusFEW-LAYER RES2-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusELECTROCATALYST-
dc.subject.keywordPlusIDENTIFICATION-
dc.subject.keywordPlusMONOLAYER-
dc.subject.keywordPlusSULFUR-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE