Full metadata record

DC Field Value Language
dc.contributor.authorPark, Hyanjoo-
dc.contributor.authorKim, Hoyoung-
dc.contributor.authorKim, Dong-Kwon-
dc.contributor.authorLee, Woo Jae-
dc.contributor.authorChoi, Insoo-
dc.contributor.authorKim, Hyoung-Juhn-
dc.contributor.authorKim, Soo-Kil-
dc.date.accessioned2024-01-19T16:03:31Z-
dc.date.available2024-01-19T16:03:31Z-
dc.date.created2021-09-02-
dc.date.issued2020-11-20-
dc.identifier.issn0360-3199-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117837-
dc.description.abstractPhosphoric acid (PA)-doped polybenzimidazole (PBI) membranes used in high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have high proton conductivity, and excellent mechanical and thermal stability. However, the deliquescence of PA leads to performance deterioration in humid atmosphere. The performance degradation upon exposure of the PA-doped membrane to humidity and the changes in the performance as a function of the PA loading in the electrodes are investigated. The performance of the HT-PEMFC employing the humidity-exposed membrane declines by 74.1% compared to that of the pristine membrane due to ineffective formation of the three-phase boundary. Loading a small amount of PA into the electrode induces drastic performance recovery with a decrease in the charge transfer resistance, especially at the anode. PA-dosing of both electrodes produces the best performance recovery, exceeding that of the pristine counterparts. This is a simple and effective method of recovering the performance of HT-PEMFCs after humidity-related deterioration. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectDOPED POLYBENZIMIDAZOLE-
dc.subjectCOMPOSITE MEMBRANES-
dc.subjectH3PO4-
dc.subjectWATER-
dc.subjectCONDUCTIVITY-
dc.subjectRESISTANCE-
dc.subjectTRANSPORT-
dc.subjectHUMIDITY-
dc.subjectMETHANOL-
dc.subjectLEVEL-
dc.titlePerformance deterioration and recovery in high-temperature polymer electrolyte membrane fuel cells: Effects of deliquescence of phosphoric acid-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijhydene.2020.03.039-
dc.description.journalClass1-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.45, no.57, pp.32844 - 32855-
dc.citation.titleINTERNATIONAL JOURNAL OF HYDROGEN ENERGY-
dc.citation.volume45-
dc.citation.number57-
dc.citation.startPage32844-
dc.citation.endPage32855-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000588285000011-
dc.identifier.scopusid2-s2.0-85082530231-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusDOPED POLYBENZIMIDAZOLE-
dc.subject.keywordPlusCOMPOSITE MEMBRANES-
dc.subject.keywordPlusH3PO4-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusHUMIDITY-
dc.subject.keywordPlusMETHANOL-
dc.subject.keywordPlusLEVEL-
dc.subject.keywordAuthorHigh-temperature polymer electrolyte membrane fuel cell-
dc.subject.keywordAuthorPhosphoric acid (H3PO4)-
dc.subject.keywordAuthorDeliquescence-
dc.subject.keywordAuthorPolybenzimidazole (PBI) membrane-
dc.subject.keywordAuthorHumidity-
dc.subject.keywordAuthorPerformance recovery-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE