Enhanced Thermal Conductivity in a Diamine-Appended Metal-Organic Framework as a Result of Cooperative CO2 Adsorption

Authors
Babaei, HasanLee, Jung-HoonDods, Matthew N.Wilmer, Christopher E.Long, Jeffrey R.
Issue Date
2020-10-07
Publisher
American Chemical Society
Citation
ACS Applied Materials & Interfaces, v.12, no.40, pp.44617 - 44621
Abstract
Diamine-appended variants of the metalorganic framework M-2(dobpdc) (M = Mg, Mn, Fe, Co, Zn; dobpdc(4-) = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) exhibit exceptional CO2 capture properties owing to a unique cooperative adsorption mechanism, and thus hold promise for use in the development of energy- and cost-efficient CO2 separations. Understanding the nature of thermal transport in these materials is essential for such practical applications, however, as temperature rises resulting from exothermic CO2 uptake could potentially offset the energy savings offered by such cooperative adsorbents. Here, molecular dynamics (MD) simulations are employed in investigating thermal transport in bare and e-2-appended Zn-2(dobpdc) (e-2 = N-ethylethylenediamine), both with and without CO2 as a guest. In the absence of CO2, the appended diamines function to enhance thermal conductivity in the ab-plane of e-2Zn(2)(dobpdc) relative to the bare framework, as a result of noncovalent interactions between adjacent diamines that provide additional heat transfer pathways across the pore channel. Upon introduction of CO2, the thermal conductivity along the pore channel (the c-axis) increases due to the cooperative formation of metal-bound ammonium carbamates, which serve to create additional heat transfer pathways. In contrast, the thermal conductivity of the bare framework remains unchanged in the presence of zinc-bound CO2 but decreases in the presence of additional adsorbed CO2.
Keywords
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; CARBON-DIOXIDE; FLUE-GAS; CAPTURE; TRANSPORT; METHANE; MOF-5; PART; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; CARBON-DIOXIDE; FLUE-GAS; CAPTURE; TRANSPORT; METHANE; MOF-5; PART; metal-organic framework; diamine-M-2(dobpdc); heat transfer; CO2; capture; phonon scattering
ISSN
1944-8244
URI
https://pubs.kist.re.kr/handle/201004/118002
DOI
10.1021/acsami.0c10233
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE