Full metadata record

DC Field Value Language
dc.contributor.authorSa, Young Jin-
dc.contributor.authorJung, Hyejin-
dc.contributor.authorShin, Dongyup-
dc.contributor.authorJeong, Hu Young-
dc.contributor.authorRinge, Stefan-
dc.contributor.authorKim, Hyungjun-
dc.contributor.authorHwang, Yun Jeong-
dc.contributor.authorJoo, Sang Hoon-
dc.date.accessioned2024-01-19T16:31:36Z-
dc.date.available2024-01-19T16:31:36Z-
dc.date.created2021-09-02-
dc.date.issued2020-10-02-
dc.identifier.issn2155-5435-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118007-
dc.description.abstractAtomically dispersed nickel sites complexed on nitrogen-doped carbon (Ni-N/C) have demonstrated considerable activity for the selective electrochemical carbon dioxide reduction reaction (CO2RR) to CO. However, the high-temperature treatment typically involved during the activation of Ni-N/C catalysts makes the origin of the high activity elusive. In this work, Ni(II) phthalocyanine molecules grafted on carbon nanotube (NiPc/CNT) and heat-treated NiPc/CNT (H-NiPc/CNT) are exploited as model catalysts to investigate the impact of thermal activation on the structure of active sites and CO2RR activity. H-NiPc/CNT exhibits a similar to 4.7-fold higher turnover frequency for CO2RR to CO in comparison to NiPc/CNT. Extended X-ray absorption fine structure analysis and density functional theory (DFT) calculations reveal that the heat treatment transforms the molecular Ni2+-N-4 sites of NiPc into Ni+-N3V (V: vacancy) and Ni+-N-3 sites incorporated in the graphene lattice that concomitantly involves breakage of Ni-N bonding, shrinkage in the Ni-N-C local structure, and decrease in the oxidation state of the Ni center from +2 to +1. DFT calculations combined with microkinetic modeling suggest that the Ni-N3V site appears to be responsible for the high CO2RR activity because of its lower barrier for the formation of * COOH intermediate and optimum *CO binding energy. In situ/operando X-ray absorption spectroscopy analyses further corroborate the importance of reduced Ni+ species in boosting the CO2RR activity.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectEFFICIENT ELECTROCATALYTIC ACTIVITY-
dc.subjectELECTROCHEMICAL REDUCTION-
dc.subjectCARBON-DIOXIDE-
dc.subjectORGANIC FRAMEWORKS-
dc.subjectOXYGEN REDUCTION-
dc.subjectSINGLE ATOMS-
dc.subjectNICKEL SITES-
dc.subjectMETAL-
dc.subjectSELECTIVITY-
dc.subjectCATALYSTS-
dc.titleThermal Transformation of Molecular Ni2+-N-4 Sites for Enhanced CO2 Electroreduction Activity-
dc.typeArticle-
dc.identifier.doi10.1021/acscatal.0c02325-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS CATALYSIS, v.10, no.19, pp.10920 - 10931-
dc.citation.titleACS CATALYSIS-
dc.citation.volume10-
dc.citation.number19-
dc.citation.startPage10920-
dc.citation.endPage10931-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000577156300010-
dc.identifier.scopusid2-s2.0-85094209051-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusEFFICIENT ELECTROCATALYTIC ACTIVITY-
dc.subject.keywordPlusELECTROCHEMICAL REDUCTION-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusORGANIC FRAMEWORKS-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusSINGLE ATOMS-
dc.subject.keywordPlusNICKEL SITES-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusSELECTIVITY-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordAuthorNi-N/C catalyst-
dc.subject.keywordAuthorelectrochemical CO2 reduction-
dc.subject.keywordAuthorheat treatment-
dc.subject.keywordAuthorlocal structure-
dc.subject.keywordAuthoroxidation state-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE