Full metadata record

DC Field Value Language
dc.contributor.authorIm, Dae-Kyun-
dc.contributor.authorHong, Jaeseung-
dc.contributor.authorGu, Boncheol-
dc.contributor.authorSung, Changmin-
dc.contributor.authorOh, Min-Kyu-
dc.date.accessioned2024-01-19T17:31:35Z-
dc.date.available2024-01-19T17:31:35Z-
dc.date.created2021-09-05-
dc.date.issued2020-06-
dc.identifier.issn1860-6768-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118564-
dc.description.abstractEscherichia coli is engineered for gamma-aminobutyrate (GABA) production in glucose minimal medium. For this, overexpression of mutant glutamate decarboxylase (GadB) and mutant glutamate/GABA antiporter (GadC), as well as deletion of GABA transaminase (GabT), are accomplished. In addition, the carbon flux to the tricarboxylic acid cycle is engineered by the overexpression of gltA, ppc, or both. The overexpression of citrate synthase (CS), encoded by gltA, increases GABA productivity, as expected. Meanwhile, the overexpression of phosphoenolpyruvate carboxylase (PPC) causes a decrease in the rate of glucose uptake, resulting in a decrease in GABA production. The phenotypes of the strains are characterized by C-13 metabolic flux analysis (C-13 MFA). The results reveal that CS overexpression increases glycolysis and anaplerotic reaction rates, as well as the citrate synthesis rate, while PPC overexpression causes little changes in metabolic fluxes, but reduces glucose uptake rate. The engineered strain produces 1.2 g L-1 of GABA from glucose. Thus, by using C-13 MFA, important information is obtained for designing metabolically engineered strains for efficient GABA production.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectGLUTAMATE-DECARBOXYLASE-
dc.subjectCORYNEBACTERIUM-GLUTAMICUM-
dc.subjectCITRATE SYNTHASE-
dc.subjectACID-
dc.subjectGABA-
dc.subjectCOLOCALIZATION-
dc.subjectSYSTEMS-
dc.subjectK-12-
dc.titleC-13 Metabolic Flux Analysis of Escherichia coli Engineered for Gamma-Aminobutyrate Production-
dc.typeArticle-
dc.identifier.doi10.1002/biot.201900346-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBIOTECHNOLOGY JOURNAL, v.15, no.6-
dc.citation.titleBIOTECHNOLOGY JOURNAL-
dc.citation.volume15-
dc.citation.number6-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000530822700001-
dc.identifier.scopusid2-s2.0-85085151065-
dc.relation.journalWebOfScienceCategoryBiochemical Research Methods-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.type.docTypeArticle-
dc.subject.keywordPlusGLUTAMATE-DECARBOXYLASE-
dc.subject.keywordPlusCORYNEBACTERIUM-GLUTAMICUM-
dc.subject.keywordPlusCITRATE SYNTHASE-
dc.subject.keywordPlusACID-
dc.subject.keywordPlusGABA-
dc.subject.keywordPlusCOLOCALIZATION-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusK-12-
dc.subject.keywordAuthorgamma-aminobutyrate-
dc.subject.keywordAuthormetabolic engineering-
dc.subject.keywordAuthortricarboxylic acid cycle-
dc.subject.keywordAuthorC-13 metabolic flux analysis-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE