Full metadata record

DC Field Value Language
dc.contributor.authorLee, Ki-Young-
dc.contributor.authorJo, Sujin-
dc.contributor.authorTan, Aik Jun-
dc.contributor.authorHuang, Mantao-
dc.contributor.authorChoi, Dongwon-
dc.contributor.authorPark, Jung Hoon-
dc.contributor.authorJi, Ho-Il-
dc.contributor.authorSon, Ji-Won-
dc.contributor.authorChang, Joonyeon-
dc.contributor.authorBeach, Geoffrey S. D.-
dc.contributor.authorWoo, Seonghoon-
dc.date.accessioned2024-01-19T17:32:35Z-
dc.date.available2024-01-19T17:32:35Z-
dc.date.created2021-09-05-
dc.date.issued2020-05-13-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118623-
dc.description.abstractVoltage control of interfacial magnetism has been greatly highlighted in spintronics research for many years, as it might enable ultralow power technologies. Among a few suggested approaches, magnetoionic control of magnetism has demonstrated large modulation of magnetic anisotropy. Moreover, the recent demonstration of magneto-ionic devices using hydrogen ions presented relatively fast magnetization toggle switching, t(SW) similar to 100 ms, at room temperature. However, the operation speed may need to be significantly improved to be used for modern electronic devices. Here, we demonstrate that the speed of proton-induced magnetization toggle switching largely depends on proton-conducting oxides. We achieve similar to 1 ms reliable (>10(3) cycles) switching using yttria-stabilized zirconia (YSZ), which is similar to 100 times faster than the state-of-the-art magneto-ionic devices reported to date at room temperature. Our results suggest that further engineering of the proton-conducting materials could bring substantial improvement that may enable new low-power computing scheme based on magneto-ionics.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectPROTON CONDUCTIVITY-
dc.subjectCERAMICS-
dc.titleFast Magneto-Ionic Switching of Interface Anisotropy Using Yttria-Stabilized Zirconia Gate Oxide-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.0c00340-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANO LETTERS, v.20, no.5, pp.3435 - 3441-
dc.citation.titleNANO LETTERS-
dc.citation.volume20-
dc.citation.number5-
dc.citation.startPage3435-
dc.citation.endPage3441-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000535255300065-
dc.identifier.scopusid2-s2.0-85084693926-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusPROTON CONDUCTIVITY-
dc.subject.keywordPlusCERAMICS-
dc.subject.keywordAuthorVoltage controlled magnetic anisotropy-
dc.subject.keywordAuthorMagneto Ionics-
dc.subject.keywordAuthorSpintronics-
dc.subject.keywordAuthorMagnetic heterostructure-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE