Full metadata record

DC Field Value Language
dc.contributor.authorKo, Young-Jin-
dc.contributor.authorChoi, Keunsu-
dc.contributor.authorYang, Boram-
dc.contributor.authorLee, Woong Hee-
dc.contributor.authorKim, Jun-Yong-
dc.contributor.authorChoi, Jae Woo-
dc.contributor.authorChae, Keun Hwa-
dc.contributor.authorLee, Jun Hee-
dc.contributor.authorHwang, Yun Jeong-
dc.contributor.authorMin, Byoung Koun-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorLee, Wook-Seong-
dc.date.accessioned2024-01-19T17:33:35Z-
dc.date.available2024-01-19T17:33:35Z-
dc.date.created2021-09-05-
dc.date.issued2020-05-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118678-
dc.description.abstractHydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process. While the subnano/atomic dispersion in noble metal nanocatalysts is known to strongly enhance their catalytic efficiency and chemoselectivity, their excessive surface energy and consequent coarsening seriously compromise their physical/chemical stability. Here, we report a subnano/atomically dispersed Pt-Ag alloy (by a simply modified polyol process) that is resistant to agglomeration/Ostwald ripening. This catalyst does not follow a conventional four-electron oxygen reduction reaction (ORR) but selectively produces H2O2 without excessive degradation of its activity. We clarified the role of the alloying element, Ag, as follows: (1) selective activation of two-electron ORR by inhibiting O-2 dissociation and (2) suppression of H2O2 decomposition by preventing the H2O2 adsorption. The present approach provides a convenient route for the direct generation of H2O2 as a simple byproduct of electricity generation by fuel-cell systems.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleA catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation-
dc.typeArticle-
dc.identifier.doi10.1039/d0ta01869d-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A, v.8, no.19, pp.9859 - 9870-
dc.citation.titleJournal of Materials Chemistry A-
dc.citation.volume8-
dc.citation.number19-
dc.citation.startPage9859-
dc.citation.endPage9870-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000536690000038-
dc.identifier.scopusid2-s2.0-85085689508-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusSINGLE-
dc.subject.keywordPlusPLATINUM-
dc.subject.keywordPlusH2O2-
dc.subject.keywordPlusATOM-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusOXYGEN REDUCTION REACTION-
dc.subject.keywordPlusWATER-GAS SHIFT-
dc.subject.keywordPlusELECTRO-FENTON-
dc.subject.keywordPlusCO OXIDATION-
dc.subject.keywordPlusDOPED CARBON-
dc.subject.keywordAuthorOxygen reduction reaction (ORR)-
dc.subject.keywordAuthorHydrogen peroxide (H2O2)-
dc.subject.keywordAuthorPt?Ag alloy-
dc.subject.keywordAuthorSubnanometer-
dc.subject.keywordAuthorElectro-Fenton process-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE