Full metadata record

DC Field Value Language
dc.contributor.authorLee, Woo Chul-
dc.contributor.authorKim, Sangtae-
dc.contributor.authorLarsen, Eric S.-
dc.contributor.authorChoi, Jung-Hae-
dc.contributor.authorBaek, Seung-Hyub-
dc.contributor.authorLee, Minji-
dc.contributor.authorCho, Deok-Yong-
dc.contributor.authorLee, Han-Koo-
dc.contributor.authorHwang, Cheol Seong-
dc.contributor.authorBielawski, Christopher W.-
dc.contributor.authorKim, Seong Keun-
dc.date.accessioned2024-01-19T18:05:01Z-
dc.date.available2024-01-19T18:05:01Z-
dc.date.created2021-09-04-
dc.date.issued2020-01-31-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119045-
dc.description.abstractAn atomic structure is widely recognized as the key that determines the physical properties of a material. A critical challenge to engineer the atomic structure is that many useful crystals are metastable under ambient conditions and difficult to realize. Here, it is demonstrated that highly metastable atomic arrangements can be synthesized in the isostructural matrix via atomic layer deposition. Studying highly metastable BeO6 octahedra in rocksalt MgO as a model system, it is experimentally and theoretically shown that the single-phase BexMg1-xO thin films adopt rocksalt structure over wurtzite for the composition range x < 0.21. The single-phase rocksalt films exhibit almost doubled dielectric constants with the presence of BeO6 octahedra. Such atomic environment engineering may create intriguing properties that have not been realized in the constituent materials. This work provides excellent opportunities to explore unprecedented materials properties via engineering metastable atomic arrangements using the isostructural matrix approach.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.subjectHIGH DIELECTRIC-CONSTANT-
dc.subjectLAYER DEPOSITION-
dc.subjectTHIN-FILMS-
dc.subjectDIOXIDE-
dc.subjectMEMORY-
dc.subjectMGO-
dc.titleAtomic engineering of metastable BeO6 octahedra in a rocksalt framework-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2019.144280-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAPPLIED SURFACE SCIENCE, v.501-
dc.citation.titleAPPLIED SURFACE SCIENCE-
dc.citation.volume501-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000504658100007-
dc.identifier.scopusid2-s2.0-85073189396-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH DIELECTRIC-CONSTANT-
dc.subject.keywordPlusLAYER DEPOSITION-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusDIOXIDE-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordPlusMGO-
dc.subject.keywordAuthorMetastable phase stabilization-
dc.subject.keywordAuthorOctahedral BeO6-
dc.subject.keywordAuthorRocksalt-
dc.subject.keywordAuthorHigh-k dielectric-
dc.subject.keywordAuthorAtomic layer deposition-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE