Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions

Authors
Niethammer, MatthiasWidmann, MatthiasRendler, TorstenMorioka, NaoyaChen, Yu-ChenStoehr, RainerUl Hassan, JawadOnoda, ShinobuOhshima, TakeshiLee, Sang-YunMukherjee, AmlanIsoya, JunichiNguyen Tien SonWrachtrup, Joerg
Issue Date
2019-12
Publisher
Nature Publishing Group
Citation
Nature Communications, v.10
Abstract
Quantum technology relies on proper hardware, enabling coherent quantum state control as well as efficient quantum state readout. In this regard, wide-bandgap semiconductors are an emerging material platform with scalable wafer fabrication methods, hosting several promising spin-active point defects. Conventional readout protocols for defect spins rely on fluorescence detection and are limited by a low photon collection efficiency. Here, we demonstrate a photo-electrical detection technique for electron spins of silicon vacancy ensembles in the 4H polytype of silicon carbide (SiC). Further, we show coherent spin state control, proving that this electrical readout technique enables detection of coherent spin motion. Our readout works at ambient conditions, while other electrical readout approaches are often limited to low temperatures or high magnetic fields. Considering the excellent maturity of SiC electronics with the outstanding coherence properties of SiC defects, the approach presented here holds promises for scalability of future SiC quantum devices.
Keywords
NITROGEN-VACANCY CENTERS; MAGNETIC-RESONANCE EDMR; 4H; MAGNETOMETER; EPR
ISSN
2041-1723
URI
https://pubs.kist.re.kr/handle/201004/119255
DOI
10.1038/s41467-019-13545-z
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE