Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries

Authors
Lee, WonmiJung, MinaSerhiichuk, DmytroNoh, ChanhoGupta, GauravHarms, CorinnaKwon, YongchaiHenkensmeier, Dirk
Issue Date
2019-12
Publisher
ELSEVIER
Citation
JOURNAL OF MEMBRANE SCIENCE, v.591
Abstract
A commercial porous polyvinylidene fluoride membrane (pore size 0.65 mu m, nominally 125 mu m thick) is spray coated with 1.2-4 mu m thick layers of polybenzimidazole. The area resistance of the porous support is 36.4 m Omega cm(2) in 2 M sulfuric acid, in comparison to 540 m Omega cm(2) for a 27 mu m thick acid doped polybenzimidazole membrane, and 124 m Omega cm(2) for PVDF-P20 (4 mu m thick blocking layer). Addition of vanadium ions to the supporting electrolyte increases the resistance, but less than for Nafion. The expected reason is a change in the osmotic pressure when the ionic strength of the electrolyte is increased, reducing the water contents in the membrane. The orientation of the composite membranes has a strong impact. Lower permeability values are found when the blocking layer is oriented towards the vanadium-lean side in ex-situ measurements. Cells with the blocking layer on the positive side have significantly lower capacity fade, also much lower than cells using Nafion 212. The coulombic efficiency of cells with PVDF-PBI membranes (98.4%) is higher than that of cells using Nafion 212 (93.6%), whereas the voltage efficiency is just slightly lower, resulting in energy efficiencies of 85.1 and 83.3%, respectively, at 80 mA/cm(2).
Keywords
ANION-EXCHANGE MEMBRANES; POLYBENZIMIDAZOLE MEMBRANES; PERFORMANCE; EFFICIENCY; STABILITY; ACID; Porous PVDF; Polybenzimidazole blocking layer; Composite membranes; Vanadium redox flow batteries
ISSN
0376-7388
URI
https://pubs.kist.re.kr/handle/201004/119290
DOI
10.1016/j.memsci.2019.117333
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE