Rational Design for Optimizing Hybrid Thermo-triboelectric Generators Targeting Human Activities

Authors
Seo, ByungseokCha, YoungsunKim, SangtaeChoi, Wonjoon
Issue Date
2019-09
Publisher
AMER CHEMICAL SOC
Citation
ACS ENERGY LETTERS, v.4, no.9, pp.2069 - 2074
Abstract
Despite the rise in Internet of Things devices and mobile electronics, devising an energy harvester with sufficient time-averaged power remains a challenge when targeting human activities. Here, we report a hybrid thermo-triboelectric generator targeting human motion with systematic optimization strategies in frequency feature-size variable spaces. The device consists of bismuth telluride (Bi2Te3) tiles with polydimethylsiloxane (PDMS) layers filled in between, thereby harvesting both thermal energy and triboelectricity from human touch. Detailed heat transport analyses reveal that optimal operational frequency for thermoelectrics may be tuned on the basis of the insulation property of PDMS. Meanwhile, triboelectricity exhibits strong feature-size dependence when PDMS is interfaced with high-dielectric thermoelectric materials. The analyses establish the design guidelines for a hybrid energy harvester that outperforms the simple physical addition of constituent energy harvesters and demonstrates an average power of 3.27 mu W/cm(3), which is feasible to power potential applications operated by human touch at 2.5 Hz.
Keywords
NANOGENERATOR; NANOFIBERS; NANOGENERATOR; NANOFIBERS
ISSN
2380-8195
URI
https://pubs.kist.re.kr/handle/201004/119636
DOI
10.1021/acsenergylett.9b01426
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE