Full metadata record

DC Field Value Language
dc.contributor.authorBaek, In-Hwan-
dc.contributor.authorPyeon, Jung Joon-
dc.contributor.authorHan, Seong Ho-
dc.contributor.authorLee, Ga-Yeon-
dc.contributor.authorChoi, Byung Joon-
dc.contributor.authorHan, Jeong Hwan-
dc.contributor.authorChung, Taek-Mo-
dc.contributor.authorHwang, Cheol Seong-
dc.contributor.authorKim, Seong Keun-
dc.date.accessioned2024-01-19T20:04:24Z-
dc.date.available2024-01-19T20:04:24Z-
dc.date.created2021-09-02-
dc.date.issued2019-04-24-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120086-
dc.description.abstractA new deposition technique is required to grow the active oxide semiconductor layer for emerging oxide electronics beyond the conventional sputtering technique. Atomic layer deposition (ALD) has the benefits of versatile composition control, low defect density in films, and conformal growth over a complex structure, which can hardly be obtained with sputtering. This study demonstrates the feasibility of growing amorphous In-Zn-Sn-O (a-IZTO) through ALD for oxide thin-film transistor (TFT) applications. In the ALD of the a-IZTO film, the growth behavior indicates that there exists a growth correlation between the precursor molecules and the film surface where the ALD reaction occurs. This provides a detailed understanding of the ALD process that is required for precise composition control. The a-IZTO film with In/Zn/Sn = 10:70:20 was chosen for high-performance TFTs, among other compositions, regarding the field-effect mobility (mu(FE)), turn-on voltage (V-on), and subthreshold swing (SS) voltage. The optimized TFT device with the a-IZTO film thickness of 8 nm revealed a high performance with a mu(FE) of 22 cm(2) V-1 s(-1), Von of 0.8 V-on and SS of 0.15 V dec(-1) after annealing at 400 degrees C for 30 min. Furthermore, an emerging device such as a vertical channel TFT was demonstrated. Thus, the a-IZTO ALD process could offer promising opportunities for a variety of emerging oxide electronics beyond planar TFTs.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectTEMPERATURE-
dc.titleHigh-Performance Thin-Film Transistors of Quaternary Indium-Zinc-Tin Oxide Films Grown by Atomic Layer Deposition-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.9b03331-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.11, no.16, pp.14892 - 14901-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume11-
dc.citation.number16-
dc.citation.startPage14892-
dc.citation.endPage14901-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000466052800041-
dc.identifier.scopusid2-s2.0-85065028744-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordAuthoratomic layer deposition-
dc.subject.keywordAuthoramorphous oxide-
dc.subject.keywordAuthorIn-Zn-Sn-O-
dc.subject.keywordAuthorthin film transistor-
dc.subject.keywordAuthorvertical transistor-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE