CNT bundle-based thin intracochlear electrode array

Authors
Choi, Gwang JinGwon, Tae MokKim, Doo HeePark, JunbeomKim, Seung MinOh, Seung HaLim, YoonseobJun, Sang BeomKim, Sung June
Issue Date
2019-03
Publisher
SPRINGER
Citation
BIOMEDICAL MICRODEVICES, v.21, no.1
Abstract
Objective: It is known that the insertion of the intracochlear electrode is critical procedure because the damage around cochlear structures can deteriorate hearing restoration. To reduce the trauma during the electrode insertion surgery, we developed a thin and flexible intracochlear electrode array constructed with carbon nanotube (CNT) bundles. Methods: Each CNT bundle was used for an individual electrode channel after coated with parylene C for insulation. By encapsulating eight CNT bundles with silicone elastomer, an 8-channel intracochlear electrode array was fabricated. The mechanical and electrochemical characteristics were assessed to evaluate the flexibility and feasibility of the electrode as a stimulation electrode. The functionality of the electrode was confirmed by electrically evoked auditory brainstem responses (eABR) recorded from a rat. Results: The proposed electrode has a thickness of 135m at the apex and 395m at the base. It was demonstrated that the CNT bundle-based electrodes require 6-fold the lower insertion force than metal wire-based electrodes. The electrode impedance and the cathodic charge storage capacitance (CSCc) were 2.70 k ?-20.4 degrees at 1kHz and-708 mC/cm(2), respectively. The eABR waves III and V were observed when stimulation current is greater than 50A. Conclusion: A thin and flexible CNT bundle-based intracochlear electrode array was successfully developed. The feasibility of the proposed electrode was shown in terms of mechanical and electrochemical characteristics. A proposed CNT bundle-based intracochlear electrode may reduce the risk of trauma during electrode insertion surgery.
Keywords
COCHLEAR IMPLANT ELECTRODES; CARBON NANOTUBE; INSERTION TRAUMA; HEARING PRESERVATION; SPEECH RECOGNITION; NEURAL STIMULATION; RESIDUAL HEARING; TEMPORAL BONE; PERFORMANCE; DIMENSIONS; COCHLEAR IMPLANT ELECTRODES; CARBON NANOTUBE; INSERTION TRAUMA; HEARING PRESERVATION; SPEECH RECOGNITION; NEURAL STIMULATION; RESIDUAL HEARING; TEMPORAL BONE; PERFORMANCE; DIMENSIONS; Carbon nanotube fiber; Intracochlear electrode array; Neural interface; Soft neural microelectrodes
ISSN
1387-2176
URI
https://pubs.kist.re.kr/handle/201004/120271
DOI
10.1007/s10544-019-0384-y
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE