Effect of sputtering conditions on the structure and magnetic properties of self-assembled BiFeO3-CoFe2O4 nanocomposite thin films

Authors
Kim, Tae CheolLee, Seung HanJung, Hyun KyuKim, Young EunChoi, Jun WooYang, DaejinKim, Dong Hun
Issue Date
2019-02-01
Publisher
ELSEVIER SCIENCE BV
Citation
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, v.471, pp.116 - 123
Abstract
This article describes the growth of self-assembled spinel-perovskite nanocomposite thin films using a sputtering technique. We explore the effects of annealing and sputtering conditions such as working pressure, Ar:O-2 ratio, and sputtering power on the structure, morphology, and magnetic properties of BiFeO3-CoFe2O4 nanocomposite thin films. Vertically aligned nanocomposites, consisting of CoFe2O4 grown as pillars in a BiFeO3 matrix, were observed under optimum growth conditions. The magnetic hysteresis loops of these nanocomposites showed a strong out-of-plane anisotropy originating from shape anisotropy of the pillars and magnetoelastic anisotropy of the CoFe2O4, but the latter was dominant. The physical properties of these nanocomposites were dramatically changed by modulating the growth conditions, which affected the growth rates and strain states. Finally, we provide a mapping that summarizes the structure and magnetic anisotropy changes that occur with growth rate, for optimizing synthesis conditions for self-assembled oxide nanostructures.
Keywords
NANOSTRUCTURES; FUNCTIONALITY; MULTIFERROICS; OXIDE; NANOSTRUCTURES; FUNCTIONALITY; MULTIFERROICS; OXIDE
ISSN
0304-8853
URI
https://pubs.kist.re.kr/handle/201004/120374
DOI
10.1016/j.jmmm.2018.09.059
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE