Full metadata record

DC Field Value Language
dc.contributor.authorBhardwaj, Richa-
dc.contributor.authorSingh, Jitendra Pal-
dc.contributor.authorChae, Keun Hwa-
dc.contributor.authorGoyal, Navdeep-
dc.contributor.authorGautam, Sanjeev-
dc.date.accessioned2024-01-19T21:04:48Z-
dc.date.available2024-01-19T21:04:48Z-
dc.date.created2021-09-05-
dc.date.issued2018-12-
dc.identifier.issn0042-207X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120612-
dc.description.abstractIn the present work, vanadium doped ZnO nanostructure, Zn1-xVxO (x = 0.00, 0.01, 0.02, 0.03) have been synthesized using sol-gel route. Rietveld refined X-ray diffraction confirms the single wurtzite phase for all the prepared samples with crystallite size ranging from 20 to 40 nm. UV-Diffuse reflectance spectroscopy shows the decrease in band gap energy from 3.20 to 3.17 eV on V doping and and Photoluminescence (PL) measurements has a strong visible emission region in the range 500-700 nm. PL broad peak in the visible region is further deconvoluted to study the defect states in the V:ZnO system. V doped ZnO nanostructure shows the room temperature ferromagnetism measured through Vibrating Sample Magnetometer hysteresis curve. The magnetic moment (mu(B)) is found to vary from 0.012 to 0.018 mu(B) per V-atom as x changes from 0.01 to 0.03 in Zn1-xVxO matrix. Magnetic structure properties are correlated with electronic transitions at different atomic levels using near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy. NEXAFS spectral features at OK-, V/Zn L-3,L-2-edge reveals the hybridization of V(3d)-O(2p) orbitals and absence of V-metallic clusters in V:ZnO system. These investigations further envisage the existence of +5 state of vanadium in Zn1-xVxO nanostructure.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectX-RAY-ABSORPTION-
dc.subjectTEMPERATURE FERROMAGNETISM-
dc.subjectOPTICAL-PROPERTIES-
dc.subject1ST-PRINCIPLES-
dc.subjectEXCHANGE-
dc.titleElectronic and magnetic structure investigation of vanadium doped ZnO nanostructure-
dc.typeArticle-
dc.identifier.doi10.1016/j.vacuum.2018.09.053-
dc.description.journalClass1-
dc.identifier.bibliographicCitationVACUUM, v.158, pp.257 - 262-
dc.citation.titleVACUUM-
dc.citation.volume158-
dc.citation.startPage257-
dc.citation.endPage262-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000449897400038-
dc.identifier.scopusid2-s2.0-85054448108-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Proceedings Paper-
dc.subject.keywordPlusX-RAY-ABSORPTION-
dc.subject.keywordPlusTEMPERATURE FERROMAGNETISM-
dc.subject.keywordPlusOPTICAL-PROPERTIES-
dc.subject.keywordPlus1ST-PRINCIPLES-
dc.subject.keywordPlusEXCHANGE-
dc.subject.keywordAuthorZnO nanostructure-
dc.subject.keywordAuthorRTFM-
dc.subject.keywordAuthorNEXAFS-
dc.subject.keywordAuthorPhotoluminescence-
dc.subject.keywordAuthorBandgap engineering-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE