Full metadata record

DC Field Value Language
dc.contributor.authorKim, Inho-
dc.contributor.authorSeo, Myung-gi-
dc.contributor.authorChoi, Changhyeok-
dc.contributor.authorKim, Jin Soo-
dc.contributor.authorJung, Euiyoung-
dc.contributor.authorHan, Geun-Ho-
dc.contributor.authorLee, Jae-Chul-
dc.contributor.authorHan, Sang Soo-
dc.contributor.authorAhn, Jae-Pyoung-
dc.contributor.authorJung, Yousung-
dc.contributor.authorLee, Kwan-Young-
dc.contributor.authorYu, Taekyung-
dc.date.accessioned2024-01-19T21:31:06Z-
dc.date.available2024-01-19T21:31:06Z-
dc.date.created2021-09-05-
dc.date.issued2018-11-07-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120691-
dc.description.abstractThe catalytic properties of materials are determined by their electronic structures, which are based on the arrangement of atoms. Using precise calculations, synthesis, analysis, and catalytic activity studies, we demonstrate that changing the lattice constant of a material can modify its electronic structure and therefore its catalytic activity. Pd/Au core/shell nanocubes with a thin Au shell thickness of 1 nm exhibit high H2O2 production rates due to their improved oxygen binding energy (Delta E-O) and hydrogen binding energy (Delta E-H), as well as their reduced activation barriers for key reactions.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectDENSITY-FUNCTIONAL THEORY-
dc.subjectBY-LAYER DEPOSITION-
dc.subjectELECTRONIC-PROPERTIES-
dc.subjectLATTICE-STRAIN-
dc.subjectGOLD-COPPER-
dc.subjectPALLADIUM-
dc.subjectOXYGEN-
dc.subjectPD-
dc.subjectREDUCTION-
dc.subjectH2O2-
dc.titleStudies on Catalytic Activity of Hydrogen Peroxide Generation according to Au Shell Thickness of Pd/Au Nanocubes-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.8b14166-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.10, no.44, pp.38109 - 38116-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume10-
dc.citation.number44-
dc.citation.startPage38109-
dc.citation.endPage38116-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000449887600038-
dc.identifier.scopusid2-s2.0-85056127655-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusDENSITY-FUNCTIONAL THEORY-
dc.subject.keywordPlusBY-LAYER DEPOSITION-
dc.subject.keywordPlusELECTRONIC-PROPERTIES-
dc.subject.keywordPlusLATTICE-STRAIN-
dc.subject.keywordPlusGOLD-COPPER-
dc.subject.keywordPlusPALLADIUM-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusPD-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusH2O2-
dc.subject.keywordAuthorPd/Au core/shell nanocubes-
dc.subject.keywordAuthorthin Au layer-
dc.subject.keywordAuthorlattice strain-
dc.subject.keywordAuthorcalculation-
dc.subject.keywordAuthorH2O2 synthesis-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE