High-efficient and defect tolerant Co2MnSb ternary Heusler alloy for spintronic application

Authors
EnamullahLee, Seung-Cheol
Issue Date
2018-10
Publisher
Elsevier BV
Citation
Journal of Alloys and Compounds, v.765, pp.1055 - 1060
Abstract
In this article, we propose an antisite defect tolerant ternary Heusler alloy, Co2MnSb, which is highly efficient for spintronic applications. Using ab-initio Density Functional Theory (DFT), we study the effect of experimentally observed intrinsic point defect (antisite defect) and lattice constant (L-c) on the halfmetallic characteristics, mechanical stability and magnetic properties of Co2MnSb. Ab-initio simulation predicts halfmetallic ferromagnetic characteristics with a high value of total magnetic moment, 6.00 (5.92) mu(B)/f .u. and large Curie temperature (T-C), 1109 K (1094 K) at relaxed (experimental) L-c. Halfmetallic characteristics and mechanical stability are sensitive to L-c variation. Experimentally, it has been observed that intrinsic defects in Heusler alloys always degrades the halfmetallic characteristics and spin polarization. Hence, all the possible binary and ternary kind of antisite defects between the transition metals and the non-magnetic p-block element of Co2MnSb have been simulated upto the disorder concentration ('x') of 11.1%. Our theoretical analysis reveals that even in presence of antisite disorder, the alloy preserves its halfmetallic characteristics specially at lower disorder concentrations. However, electronic density of states and total magnetic moment are affected significantly in presence of disorder. In some disordered alloys, total magnetic moment exceeds beyond 6.00 mu(B), indicating towards the higher value of T-C with respect to the parent compound. Formation energy of particular disordered alloys compete with the formation energy of parent alloy, makes the compound defect tolerant material. Halfmetallic characteristics, high magnetic moment and large T-C make the defect tolerant Co2MnSb alloy highly efficient for spintronic applications. (C) 2018 Elsevier B.V. All rights reserved.
Keywords
TEMPERATURE; GE; SI; METALS; FILMS; GA; Heusler alloys; Density functional theory(DFT); Halfmetallic characteristics; Electronic structure and magnetism; Intrinsic point defects; Pressure effect
ISSN
0925-8388
URI
https://pubs.kist.re.kr/handle/201004/120821
DOI
10.1016/j.jallcom.2018.06.295
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE