Enhanced Thermal Conductivity of Liquid Crystalline Epoxy Resin using Controlled Linear Polymerization

Authors
Islam, Akherul Md.Lim, HongjinYou, Nam-HoAhn, SeokhoonGoh, MunjuHahn, Jae RyangYeo, HyeonukJang, Se Gyu
Issue Date
2018-10
Publisher
AMER CHEMICAL SOC
Citation
ACS MACRO LETTERS, v.7, no.10, pp.1180 - 1185
Abstract
A powerful strategy to enhance the thermal conductivity of liquid crystalline epoxy resin (LCER) by simply replacing the conventional amine cross-linker with a cationic initiator was developed. The cationic initiator linearly wove the epoxy groups tethered on the microscopically aligned liquid crystal mesogens, resulting in freezing of the ordered LC microstructures even after curing. Owing to the reduced phonon scattering during heat transport through the ordered LC structure, a dramatic improvement in the thermal conductivity of neat cation-cured LCER was achieved to give a value similar to 141% (i.e., 0.48 W/mK) higher than that of the amorphous amine-cured LCER. In addition, at the same composite volume fraction in the presence of a 2-D boron nitride filler, an approximately 130% higher thermal conductivity (maximum similar to 23 W/mK at 60 vol %) was observed. The nanoarchitecture effect of the ordered LCER on the thermal conductivity was then examined by a systematic investigation using differential scanning calorimetry, polarized optical microscopy, X-ray diffraction, and thermal conductivity measurements. The linear polymerization of LCER can therefore be considered a practical strategy to enable the cost-efficient mass production of heat-dissipating materials, due to its high efficiency and simple process without the requirement for complex equipment.
Keywords
MAGNETIC-FIELD ORIENTATION; THERMOSETS; MESOGEN; COMPOSITES; MANAGEMENT; CURE; ELECTRONICS; SYSTEM; MAGNETIC-FIELD ORIENTATION; THERMOSETS; MESOGEN; COMPOSITES; MANAGEMENT; CURE; ELECTRONICS; SYSTEM; Liquid crystal; epoxy; thermal conductivity; linear polymerization; initiator; crystallinity
ISSN
2161-1653
URI
https://pubs.kist.re.kr/handle/201004/120865
DOI
10.1021/acsmacrolett.8b00456
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE