A Walking-in-Place Method for Virtual Reality Using Position and Orientation Tracking

Authors
Lee, JuyoungAhn, Sang ChulHwang, Jae-In
Issue Date
2018-09
Publisher
MDPI
Citation
SENSORS, v.18, no.9
Abstract
People are interested in traveling in an infinite virtual environment, but no standard navigation method exists yet in Virtual Reality (VR). The Walking-In-Place (WIP) technique is a navigation method that simulates movement to enable immersive travel with less simulator sickness in VR. However, attaching the sensor to the body is troublesome. A previously introduced method that performed WIP using an Inertial Measurement Unit (IMU) helped address this problem. That method does not require placement of additional sensors on the body. That study proved, through evaluation, the acceptable performance of WIP. However, this method has limitations, including a high step-recognition rate when the user does various body motions within the tracking area. Previous works also did not evaluate WIP step recognition accuracy. In this paper, we propose a novel WIP method using position and orientation tracking, which are provided in the most PC-based VR HMDs. Our method also does not require additional sensors on the body and is more stable than the IMU-based method for non-WIP motions. We evaluated our method with nine subjects and found that the WIP step accuracy was 99.32% regardless of head tilt, and the error rate was 0% for squat motion, which is a motion prone to error. We distinguish jog-in-place as "intentional motion" and others as "unintentional motion". This shows that our method correctly recognizes only jog-in-place. We also apply the saw-tooth function virtual velocity to our method in a mathematical way. Natural navigation is possible when the virtual velocity approach is applied to the WIP method. Our method is useful for various applications which requires jogging.
Keywords
ENVIRONMENTS; IMU; ENVIRONMENTS; IMU; position and orientation tracking; head-mounted display; motion analysis; gait; walking-in-place; virtual velocity; virtual reality
ISSN
1424-8220
URI
https://pubs.kist.re.kr/handle/201004/120999
DOI
10.3390/s18092832
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE