Modified Magnesium Hydroxide Nanoparticles Inhibit the Inflammatory Response to Biodegradable Poly(lactide-co-glycolide) Implants

Authors
Lih, EugeneKum, Chang HunPark, WooramChun, So YoungCho, YoungjinJoung, Yoon KiPark, Kwang-SookHong, Young JoonAhn, Dong JuneKim, Byung-SooKwon, Tae GyunJeong, Myung HoHubbell, Jeffrey A.Han, Dong Keun
Issue Date
2018-07
Publisher
AMER CHEMICAL SOC
Citation
ACS NANO, v.12, no.7, pp.6917 - 6925
Abstract
Biodegradable polymers have been extensively used in biomedical applications, ranging from regenerative medicine to medical devices. However, the acidic byproducts resulting from degradation can generate vigorous inflammatory reactions, often leading to clinical failure. We present an approach to prevent acid-induced inflammatory responses associated with biodegradable polymers, here poly(lactide-co-glycolide), by using oligo(lactide)-grafted magnesium hydroxide (Mg(OH)(2)) nanoparticles, which neutralize the acidic environment. In particular, we demonstrated that incorporating the modified Mg(OH)(2) nanoparticles within degradable coatings on drug-eluting arterial stents efficiently attenuates the inflammatory response and in-stent intimal thickening by more than 97 and 60%, respectively, in the porcine coronary artery, compared with that of drug-eluting stent control. We also observed that decreased inflammation allows better reconstruction of mouse renal glomeruli in a kidney tissue regeneration model. Such modified Mg(OH)(2) nanoparticles may be useful to extend the applicability and improve clinical success of biodegradable devices used in various biomedical fields.
Keywords
BIOMEDICAL APPLICATIONS; DEGRADATION; BIOCOMPATIBILITY; POLY(L-LACTIDE); MICROSPHERES; ACID); PLA; BIOMATERIALS; REDUCTION; SCAFFOLDS; BIOMEDICAL APPLICATIONS; DEGRADATION; BIOCOMPATIBILITY; POLY(L-LACTIDE); MICROSPHERES; ACID); PLA; BIOMATERIALS; REDUCTION; SCAFFOLDS; biodegradable polymers; inflammation; magnesium hydroxide; neutralization; biomedical applications
ISSN
1936-0851
URI
https://pubs.kist.re.kr/handle/201004/121199
DOI
10.1021/acsnano.8b02365
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE