Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Yong Whan-
dc.contributor.authorJang, Segeun-
dc.contributor.authorChun, Myung-Suk-
dc.contributor.authorKim, Sang Moon-
dc.contributor.authorChoi, Mansoo-
dc.date.accessioned2024-01-19T23:02:59Z-
dc.date.available2024-01-19T23:02:59Z-
dc.date.created2021-09-03-
dc.date.issued2018-04-
dc.identifier.issn2288-6206-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121544-
dc.description.abstractThe fabrication of power generators utilized by streaming potential has been attracting profound interests for various applications such as wearable healthcare and self-powered micro/nano systems. So far, streaming potential has been generated by a charged channel wall and accumulated counter-ions. However, this approach is assumed as no-slip boundary condition, while the slippery channel wall is critical for high efficiency. Herein, we demonstrate a microfluidic power generator based on streaming potential that can be intrinsically charged at a hydrophobic channel wall. This charging mechanism has higher values of charge density and slip boundary condition. We have achieved output voltage of similar to 2.7 V and streaming conductance density of similar to 1.23 A/m(2).bar with the channel that is similar to 2 mu m high and similar to 3.5 mu m wide. Our result is a promising step for obtaining low-cost, high efficient power-generators for micro/nano systems.-
dc.languageEnglish-
dc.publisherKOREAN SOC PRECISION ENG-
dc.subjectENERGY-CONVERSION EFFICIENCY-
dc.subjectNANOFLUIDIC CHANNELS-
dc.subjectCHARGE-
dc.subjectINTERFACE-
dc.subjectTRANSPORT-
dc.subjectDEVICES-
dc.titleEfficient Microfluidic Power Generator Based on Interaction between DI Water and Hydrophobic-Channel Surface-
dc.typeArticle-
dc.identifier.doi10.1007/s40684-018-0026-5-
dc.description.journalClass1-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, v.5, no.2, pp.255 - 260-
dc.citation.titleINTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY-
dc.citation.volume5-
dc.citation.number2-
dc.citation.startPage255-
dc.citation.endPage260-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.kciidART002335118-
dc.identifier.wosid000432458600008-
dc.identifier.scopusid2-s2.0-85051060195-
dc.relation.journalWebOfScienceCategoryGreen & Sustainable Science & Technology-
dc.relation.journalWebOfScienceCategoryEngineering, Manufacturing-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusENERGY-CONVERSION EFFICIENCY-
dc.subject.keywordPlusNANOFLUIDIC CHANNELS-
dc.subject.keywordPlusCHARGE-
dc.subject.keywordPlusINTERFACE-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordAuthorStreaming potential-
dc.subject.keywordAuthorHydrophobic surface-
dc.subject.keywordAuthorIntrinsic charge-
dc.subject.keywordAuthorMicrofluidics-
dc.subject.keywordAuthorElectrokinetics-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE